comments | difficulty | edit_url |
---|---|---|
true |
中等 |
给你一根长度为 n
的绳子,请把绳子剪成整数长度的 m
段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m - 1]
。请问 k[0]*k[1]*...*k[m - 1]
可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 1000
注意:本题与主站 343 题相同:https://leetcode.cn/problems/integer-break/
当
时间复杂度
class Solution:
def cuttingRope(self, n: int) -> int:
mod = 10**9 + 7
if n < 4:
return n - 1
if n % 3 == 0:
return pow(3, n // 3, mod)
if n % 3 == 1:
return (pow(3, n // 3 - 1, mod) * 4) % mod
return pow(3, n // 3, mod) * 2 % mod
class Solution {
private final int mod = (int) 1e9 + 7;
public int cuttingRope(int n) {
if (n < 4) {
return n - 1;
}
if (n % 3 == 0) {
return qpow(3, n / 3);
}
if (n % 3 == 1) {
return (int) (4L * qpow(3, n / 3 - 1) % mod);
}
return 2 * qpow(3, n / 3) % mod;
}
private int qpow(long a, long n) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
}
}
class Solution {
public:
int cuttingRope(int n) {
if (n < 4) {
return n - 1;
}
const int mod = 1e9 + 7;
auto qpow = [&](long long a, long long n) {
long long ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
};
if (n % 3 == 0) {
return qpow(3, n / 3);
}
if (n % 3 == 1) {
return qpow(3, n / 3 - 1) * 4L % mod;
}
return qpow(3, n / 3) * 2 % mod;
}
};
func cuttingRope(n int) int {
if n < 4 {
return n - 1
}
const mod = 1e9 + 7
qpow := func(a, n int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
if n%3 == 0 {
return qpow(3, n/3)
}
if n%3 == 1 {
return qpow(3, n/3-1) * 4 % mod
}
return qpow(3, n/3) * 2 % mod
}
impl Solution {
pub fn cutting_rope(mut n: i32) -> i32 {
if n < 4 {
return n - 1;
}
let mut res = 1i64;
while n > 4 {
res = (res * 3) % 1000000007;
n -= 3;
}
((res * (n as i64)) % 1000000007) as i32
}
}
/**
* @param {number} n
* @return {number}
*/
var cuttingRope = function (n) {
if (n < 4) {
return n - 1;
}
const mod = 1e9 + 7;
const qpow = (a, n) => {
let ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = Number((BigInt(ans) * BigInt(a)) % BigInt(mod));
}
a = Number((BigInt(a) * BigInt(a)) % BigInt(mod));
}
return ans;
};
const k = Math.floor(n / 3);
if (n % 3 === 0) {
return qpow(3, k);
}
if (n % 3 === 1) {
return (4 * qpow(3, k - 1)) % mod;
}
return (2 * qpow(3, k)) % mod;
};
public class Solution {
public int CuttingRope(int n) {
if (n < 4) {
return n - 1;
}
int res = 1;
while (n > 4) {
res *= 3;
n -= 3;
}
if (n == 4) {
return (res << 2) % 1000000007;
}
return (res * n) % 1000000007;
}
}
class Solution {
private let mod = 1000000007
func cuttingRope(_ n: Int) -> Int {
if n < 4 {
return n - 1
}
if n % 3 == 0 {
return qpow(3, n / 3)
}
if n % 3 == 1 {
return (4 * qpow(3, n / 3 - 1)) % mod
}
return (2 * qpow(3, n / 3)) % mod
}
private func qpow(_ a: Int, _ n: Int) -> Int {
var a = a
var n = n
var ans: Int = 1
while n > 0 {
if (n & 1) == 1 {
ans = (ans * a) % mod
}
a = (a * a) % mod
n >>= 1
}
return ans
}
}