-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_lfm_t2i.py
380 lines (331 loc) · 12.3 KB
/
train_lfm_t2i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import ml_collections
import torch
from torch import multiprocessing as mp
from datasets import get_dataset
from torchvision.utils import make_grid, save_image
import tools.utils_uvit as utils_uvit
import einops
from torch.utils._pytree import tree_map
import accelerate
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import tempfile
from tools.fid_score import calculate_fid_given_paths
from absl import logging
import builtins
import os
import wandb
import libs.autoencoder
import numpy as np
from flow_matching_t2i import CNF
from absl import flags
from absl import app
from ml_collections import config_flags
import sys
from pathlib import Path
def train(config):
if config.get("benchmark", False):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
mp.set_start_method("spawn")
accelerator = accelerate.Accelerator()
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
logging.info(f"Process {accelerator.process_index} using device: {device}")
config.mixed_precision = accelerator.mixed_precision
config = ml_collections.FrozenConfigDict(config)
assert config.train.batch_size % accelerator.num_processes == 0
mini_batch_size = config.train.batch_size // accelerator.num_processes
if accelerator.is_main_process:
os.makedirs(config.ckpt_root, exist_ok=True)
os.makedirs(config.sample_dir, exist_ok=True)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
wandb.init(
dir=os.path.abspath(config.workdir),
project="lfm_uvit",
config=config.to_dict(),
name=config.hparams,
job_type="train",
mode="online",
)
utils_uvit.set_logger(
log_level="info", fname=os.path.join(config.workdir, "output.log")
)
logging.info(config)
else:
utils_uvit.set_logger(log_level="error")
builtins.print = lambda *args: None
logging.info(f"Run on {accelerator.num_processes} devices")
dataset = get_dataset(**config.dataset)
assert os.path.exists(dataset.fid_stat)
train_dataset = dataset.get_split(split="train", labeled=True)
train_dataset_loader = DataLoader(
train_dataset,
batch_size=mini_batch_size,
shuffle=True,
drop_last=True,
num_workers=8,
pin_memory=True,
persistent_workers=True,
)
test_dataset = dataset.get_split(split="test", labeled=True) # for sampling
test_dataset_loader = DataLoader(
test_dataset,
batch_size=config.sample.mini_batch_size,
shuffle=True,
drop_last=True,
num_workers=8,
pin_memory=True,
persistent_workers=True,
)
train_state = utils_uvit.initialize_train_state(config, device)
(
nnet,
nnet_ema,
optimizer,
train_dataset_loader,
test_dataset_loader,
) = accelerator.prepare(
train_state.nnet,
train_state.nnet_ema,
train_state.optimizer,
train_dataset_loader,
test_dataset_loader,
)
lr_scheduler = train_state.lr_scheduler
# train_state.resume(config.ckpt_root)
if len(os.listdir(config.ckpt_root)):
logging.warning(
"ckpt_root is True, will load[resume] pretrained model from {}".format(
config.ckpt_root
)
)
train_state.resume(config.ckpt_root)
else:
if config.pretrained_path is not None:
logging.warning(
"pretrained_path is True, will load pretrained model from {}".format(
config.pretrained_path
)
)
if config.nnet.name == "unet_t2i":
train_state.load_sd_unet_remove_attention(
config.pretrained_path, is_strict=False
)
elif config.nnet.name == "uvit_t2i":
train_state.load_nnet_mscoco_or_in256(config.pretrained_path)
else:
raise not NotImplementedError
else:
logging.warning("pretrained_path is None, will train from scratch")
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch):
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch):
return autoencoder.decode(_batch)
def get_data_generator():
while True:
for data in tqdm(
train_dataset_loader,
disable=not accelerator.is_main_process,
desc="epoch",
):
yield data
data_generator = get_data_generator()
def get_context_generator():
while True:
for data in test_dataset_loader:
_, _context = data
yield _context
context_generator = get_context_generator()
# set the score_model to train
score_model = CNF(net=nnet)
score_model_ema = CNF(net=nnet_ema)
def get_fixed_noise(batch_size, device, sample_channels, sample_resolution):
fixed_noise = torch.randn(
(
batch_size * torch.cuda.device_count(),
sample_channels,
sample_resolution,
sample_resolution,
),
device=device,
)
return fixed_noise
fixed_noise = get_fixed_noise(
batch_size=config.vis_num,
device=device,
sample_channels=config.z_shape[0],
sample_resolution=config.z_shape[1],
)
def train_step(_batch):
_metrics = dict()
optimizer.zero_grad()
_z = (
autoencoder.sample(_batch[0])
if "feature" in config.dataset.name
else encode(_batch[0])
)
loss = score_model.training_losses(
_z,
context=_batch[1],
sigma_min=config.dynamic.sigma_min,
**config.dissection,
)
_metrics["loss"] = accelerator.gather(loss.detach()).mean()
accelerator.backward(loss.mean())
optimizer.step()
lr_scheduler.step()
train_state.ema_update(config.get("ema_rate", 0.9999))
train_state.step += 1
return dict(lr=train_state.optimizer.param_groups[0]["lr"], **_metrics)
def dpm_solver_sample(_n_samples, _sample_steps, context):
_vis_num = min(len(fixed_noise), len(context), config.vis_num)
_z = score_model.decode(
fixed_noise[:_vis_num],
context=context[:_vis_num],
**config.dissection,
)
return decode(_z)
def eval_step(n_samples, sample_steps):
logging.info(
f"eval_step: n_samples={n_samples}, sample_steps={sample_steps},"
f"mini_batch_size={config.sample.mini_batch_size}"
)
def sample_fn(_n_samples):
_context = next(context_generator)
assert len(_context) == _n_samples
return dpm_solver_sample(_n_samples, sample_steps, context=_context)
with tempfile.TemporaryDirectory() as temp_path:
path = config.sample.path or temp_path
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
utils_uvit.sample2dir(
accelerator,
path,
n_samples,
config.sample.mini_batch_size,
sample_fn,
dataset.unpreprocess,
)
_fid = 0
if accelerator.is_main_process:
_fid = calculate_fid_given_paths((dataset.fid_stat, path))
logging.info(f"step={train_state.step} fid{n_samples}={_fid}")
with open(os.path.join(config.workdir, "eval.log"), "a") as f:
print(f"step={train_state.step} fid{n_samples}={_fid}", file=f)
wandb.log({f"fid{n_samples}": _fid}, step=train_state.step)
_fid = torch.tensor(_fid, device=device)
_fid = accelerator.reduce(_fid, reduction="sum")
return _fid.item()
logging.info(
f"Start fitting, step={train_state.step}, mixed_precision={config.mixed_precision}"
)
step_fid = []
while train_state.step < config.train.n_steps:
nnet.train()
batch = tree_map(lambda x: x.to(device), next(data_generator))
metrics = train_step(batch)
nnet.eval()
if (
accelerator.is_main_process
and train_state.step % config.train.log_interval == 0
):
logging.info(utils_uvit.dct2str(dict(step=train_state.step, **metrics)))
logging.info(config.workdir)
wandb.log(metrics, step=train_state.step)
if (
accelerator.is_main_process
and train_state.step % config.train.eval_interval == 0
):
torch.cuda.empty_cache()
logging.info("Save a grid of images...")
contexts = torch.tensor(dataset.contexts, device=device)[: 2 * 5]
samples = dpm_solver_sample(
_n_samples=2 * 5, _sample_steps=50, context=contexts
)
samples = make_grid(dataset.unpreprocess(samples), 5)
save_image(
samples, os.path.join(config.sample_dir, f"{train_state.step}.png")
)
wandb.log({"samples": wandb.Image(samples)}, step=train_state.step)
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
if (
train_state.step % config.train.save_interval == 0
or train_state.step == config.train.n_steps
):
torch.cuda.empty_cache()
logging.info(f"Save and eval checkpoint {train_state.step}...")
if accelerator.local_process_index == 0:
train_state.save(
os.path.join(config.ckpt_root, f"{train_state.step}.ckpt")
)
accelerator.wait_for_everyone()
fid = eval_step(
n_samples=30, sample_steps=50
) # calculate fid of the saved checkpoint
step_fid.append((train_state.step, fid))
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
logging.info(f"Finish fitting, step={train_state.step}")
logging.info(f"step_fid: {step_fid}")
step_best = sorted(step_fid, key=lambda x: x[1])[0][0]
logging.info(f"step_best: {step_best}")
train_state.load(os.path.join(config.ckpt_root, f"{step_best}.ckpt"))
del metrics
accelerator.wait_for_everyone()
eval_step(
n_samples=config.sample.n_samples, sample_steps=config.sample.sample_steps
)
# cfg_path = "configs/lfm_mmcelebahq256_uvit_small_deep16.py"
# cfg_path = "configs/lfm_mmcelebahq256_unet_large.py"
cfg_path = "configs/lfm_mscoco_unet_from_in256.py"
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", cfg_path, "Training configuration.", lock_config=False
)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("workdir", None, "Work unit directory.")
def get_config_name():
argv = sys.argv
for i in range(1, len(argv)):
if argv[i].startswith("--config="):
return Path(argv[i].split("=")[-1]).stem
return "noneconfig"
def get_hparams(config):
argv = sys.argv
lst = [config.nnet.name]
for i in range(1, len(argv)):
assert "=" in argv[i]
if argv[i].startswith("--config.") and not argv[i].startswith(
"--config.dataset.path"
):
hparam, val = argv[i].split("=")
hparam = hparam.split(".")[-1]
if hparam.endswith("path"):
val = Path(val).stem
lst.append(f"{hparam}={val}")
hparams = "-".join(lst)
if hparams == "":
hparams = "default"
return hparams
def main(argv):
version_str = "v2" # v1 should be removed, I forgot to turn off the CFG flag in v1
config = FLAGS.config
config.config_name = get_config_name()
config.hparams = "-".join(
[version_str, config.nnet.name, config.dataset.name, get_hparams(config)]
)
config.workdir = FLAGS.workdir or os.path.join(
"workdir", config.config_name, config.hparams
)
config.ckpt_root = os.path.join(config.workdir, "ckpts")
config.sample_dir = os.path.join(config.workdir, "samples")
train(config)
if __name__ == "__main__":
app.run(main)