-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic_utils.py
executable file
·235 lines (202 loc) · 7.2 KB
/
basic_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
from flowseq.utils import logger
import torch
import json, os
import time
from flowseq import gaussian_diffusion as gd
from flowseq.gaussian_diffusion import SpacedDiffusion, space_timesteps
from flowseq.rflow import RFlow
from flowseq.transformer_model import TransformerNetModel
from transformers import AutoTokenizer, PreTrainedTokenizerFast
class myTokenizer:
"""
Load tokenizer from bert config or defined BPE vocab dict
"""
################################################
### You can custome your own tokenizer here. ###
################################################
def __init__(self, args):
if args.vocab == "bert":
tokenizer = AutoTokenizer.from_pretrained(args.config_name)
self.tokenizer = tokenizer
self.sep_token_id = tokenizer.sep_token_id
self.pad_token_id = tokenizer.pad_token_id
# save
tokenizer.save_pretrained(args.checkpoint_path)
else:
# load vocab from the path
print("#" * 30, "load vocab from", args.vocab)
vocab_dict = {"[START]": 0, "[END]": 1, "[UNK]": 2, "[PAD]": 3}
with open(args.vocab, "r", encoding="utf-8") as f:
for row in f:
vocab_dict[row.strip().split(" ")[0]] = len(vocab_dict)
self.tokenizer = vocab_dict
self.rev_tokenizer = {v: k for k, v in vocab_dict.items()}
self.sep_token_id = vocab_dict["[END]"]
self.pad_token_id = vocab_dict["[PAD]"]
# save
if int(os.environ["LOCAL_RANK"]) == 0:
path_save_vocab = f"{args.checkpoint_path}/vocab.json"
print("save vocab to", path_save_vocab)
with open(path_save_vocab, "w") as f:
json.dump(vocab_dict, f)
self.vocab_size = len(self.tokenizer)
logger.log(
f"***** change vocab_size from {args.vocab_size} to {self.vocab_size}"
)
args.vocab_size = self.vocab_size # update vocab size in args
def encode_token(self, sentences):
if isinstance(self.tokenizer, dict):
input_ids = [
[0]
+ [self.tokenizer.get(x, self.tokenizer["[UNK]"]) for x in seq.split()]
+ [1]
for seq in sentences
]
elif isinstance(self.tokenizer, PreTrainedTokenizerFast):
input_ids = self.tokenizer(sentences, add_special_tokens=True)["input_ids"]
else:
assert False, "invalid type of vocab_dict"
return input_ids
def decode_token(self, seq):
if isinstance(self.tokenizer, dict):
seq = seq.squeeze(-1).tolist()
while len(seq) > 0 and seq[-1] == self.pad_token_id:
seq.pop()
tokens = (
" ".join([self.rev_tokenizer[x] for x in seq])
.replace("__ ", "")
.replace("@@ ", "")
)
elif isinstance(self.tokenizer, PreTrainedTokenizerFast):
seq = seq.squeeze(-1).tolist()
while len(seq) > 0 and seq[-1] == self.pad_token_id:
seq.pop()
tokens = self.tokenizer.decode(seq)
else:
assert False, "invalid type of vocab_dict"
return tokens
def load_model_emb(args, vocab_size):
### random emb or pre-defined embedding like glove embedding. You can custome your own init here.
model = torch.nn.Embedding(vocab_size, args.hidden_dim)
path_save = "{}/random_emb.torch".format(args.checkpoint_path)
logger.log("read random embedding from {}".format(path_save))
path_save_ind = path_save + ".done"
if int(os.environ["LOCAL_RANK"]) == 0:
if os.path.exists(path_save):
print("reload the random embeddings", model)
model.load_state_dict(torch.load(path_save))
else:
print("initializing the random embeddings", model)
torch.nn.init.normal_(model.weight)
torch.save(model.state_dict(), path_save)
os.sync()
with open(path_save_ind, "x") as _:
pass
else:
while not os.path.exists(path_save_ind):
time.sleep(1)
print("reload the random embeddings", model)
model.load_state_dict(torch.load(path_save))
return model
def load_tokenizer(args):
tokenizer = myTokenizer(args)
return tokenizer
def load_defaults_config():
"""
Load defaults for training args.
"""
with open("diffuseq/config.json", "r") as f:
return json.load(f)
def load_defaults_config_from_path(json_path):
"""
Load defaults for training args.
"""
with open(json_path, "r") as f:
return json.load(f)
def create_model_and_diffusion(
hidden_t_dim,
hidden_dim,
vocab_size,
config_name,
use_plm_init,
dropout,
diffusion_steps,
noise_schedule,
learn_sigma,
timestep_respacing,
predict_xstart,
rescale_timesteps,
sigma_small,
rescale_learned_sigmas,
use_kl,
note,
**kwargs,
):
model = TransformerNetModel(
input_dims=hidden_dim,
output_dims=(hidden_dim if not learn_sigma else hidden_dim * 2),
hidden_t_dim=hidden_t_dim,
dropout=dropout,
config_name=config_name,
vocab_size=vocab_size,
init_pretrained=use_plm_init,
)
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
if not timestep_respacing:
timestep_respacing = [diffusion_steps]
diffusion = SpacedDiffusion(
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
betas=betas,
rescale_timesteps=rescale_timesteps,
predict_xstart=predict_xstart,
learn_sigmas=learn_sigma,
sigma_small=sigma_small,
use_kl=use_kl,
rescale_learned_sigmas=rescale_learned_sigmas,
)
return model, diffusion
def create_model_and_flow(
hidden_t_dim,
hidden_dim,
vocab_size,
config_name,
dropout,
**kwargs,
):
logger.log("### Creating model and flow...")
model = TransformerNetModel(
input_dims=hidden_dim,
output_dims=hidden_dim,
hidden_t_dim=hidden_t_dim,
dropout=dropout,
config_name=config_name,
vocab_size=vocab_size,
init_pretrained="no",
)
_flow = RFlow()
pytorch_total_params = sum(p.numel() for p in model.parameters())
logger.log(f"### The parameter count is {pytorch_total_params}")
return model, _flow
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys):
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")