-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_serving.py
452 lines (397 loc) · 14.6 KB
/
benchmark_serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""Benchmark online serving throughput.
On the server side, run one of the following commands:
(vLLM backend)
python -m vllm.entrypoints.api_server \
--model <your_model> --swap-space 16 \
--disable-log-requests
(TGI backend)
./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
On the client side, run:
python benchmarks/benchmark_serving.py \
--backend <backend> \
--model <your_model> --dataset <target_dataset> \
--request-rate <request_rate>
"""
import argparse
import asyncio
import json
import random
import time
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Tuple, Optional
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase, GPT2Tokenizer
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0
prompt_len: int = 0
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
async def async_request_vllm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"n": 1,
"best_of": request_func_input.best_of,
"use_beam_search": request_func_input.use_beam_search,
"temperature": 0.0 if request_func_input.use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"ignore_eos": True,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
# When streaming, '\0' is appended to the end of response.
body = data.decode("utf-8").strip("\0")
output.generated_text = json.loads(
body)["text"][0][len(request_func_input.prompt):]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# some of these will be filtered out, so sample more than we need
# sampled_indices = random.sample(range(len(dataset)),
# int(num_requests * 1.2))
sampled_indices = list(range(int(num_requests * 1.2))) # new changes
dataset = [dataset[i] for i in sampled_indices]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
completions = [completion for _, completion in dataset]
completion_token_ids = tokenizer(completions).input_ids
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))
# Filter out too long sequences.
filtered_dataset: List[Tuple[str, int, int]] = []
for prompt, prompt_token_ids, output_len in tokenized_dataset:
prompt_len = len(prompt_token_ids)
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > 1024 or prompt_len + output_len > 2048:
# Prune too long sequences.
continue
filtered_dataset.append((prompt, prompt_len, output_len))
# Sample the requests.
# sampled_requests = random.sample(filtered_dataset, num_requests)
sampled_requests = filtered_dataset[:num_requests] # new changes
return sampled_requests
async def get_request(
input_requests: List[Tuple[str, int, int]],
request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
input_requests = iter(input_requests)
for request in input_requests:
yield request
if request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
# Sample the request interval from the exponential distribution.
interval = np.random.exponential(1.0 / request_rate)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> BenchmarkMetrics:
total_output = 0
total_input = 0
completed = 0
per_token_latencies = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer.encode(outputs[i].generated_text)) # should not use tokenizer here, instead split by space. But not a big deal.
total_output += output_len
total_input += input_requests[i][1]
per_token_latencies.append(outputs[i].latency / output_len)
ttfts.append(outputs[i].ttft)
completed += 1
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=total_output,
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=total_output / dur_s,
mean_ttft_ms=np.mean(ttfts) * 1000,
median_ttft_ms=np.median(ttfts) * 1000,
p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
mean_tpot_ms=np.mean(per_token_latencies) * 1000,
median_tpot_ms=np.median(per_token_latencies) * 1000,
p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
)
return metrics
async def benchmark(
backend: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
disable_tqdm: bool,
):
request_func = async_request_vllm
print(f"Traffic request rate: {request_rate}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print(f"Successful requests: {metrics.completed}")
print(f"Benchmark duration: {benchmark_duration:2f} s")
print(f"Total input tokens: {metrics.total_input}")
print(f"Total generated tokens: {metrics.total_output}")
print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_inthroughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms
}
return result
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["version"] = args.version
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = (
f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
)
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument(
"--backend",
type=str,
default="vllm",
# choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--version",
type=str,
default="N/A",
help="Version of the serving backend/engine.",
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",
type=str,
default="/generate",
help="API endpoint.",
)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument(
"--model",
type=str,
required=False,
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disable tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
args = parser.parse_args()
main(args)