-
Notifications
You must be signed in to change notification settings - Fork 134
/
joint.py
180 lines (156 loc) · 6.98 KB
/
joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""Example running MemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
from data_utils import load_task, vectorize_data
from sklearn import cross_validation, metrics
from memn2n import MemN2N
from itertools import chain
from six.moves import range, reduce
import tensorflow as tf
import numpy as np
import pandas as pd
tf.flags.DEFINE_float("learning_rate", 0.01, "Learning rate for Adam Optimizer.")
tf.flags.DEFINE_float("anneal_rate", 15, "Number of epochs between halving the learnign rate.")
tf.flags.DEFINE_float("anneal_stop_epoch", 60, "Epoch number to end annealed lr schedule.")
tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer("evaluation_interval", 10, "Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 60, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 40, "Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("memory_size", 50, "Maximum size of memory.")
tf.flags.DEFINE_integer("random_state", None, "Random state.")
tf.flags.DEFINE_string("data_dir", "data/tasks_1-20_v1-2/en/", "Directory containing bAbI tasks")
tf.flags.DEFINE_string("output_file", "scores.csv", "Name of output file for final bAbI accuracy scores.")
FLAGS = tf.flags.FLAGS
# load all train/test data
ids = range(1, 21)
train, test = [], []
for i in ids:
tr, te = load_task(FLAGS.data_dir, i)
train.append(tr)
test.append(te)
data = list(chain.from_iterable(train + test))
vocab = sorted(reduce(lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)))
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([ len(s) for s, _, _ in data ]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
# Add time words/indexes
for i in range(memory_size):
word_idx['time{}'.format(i+1)] = 'time{}'.format(i+1)
vocab_size = len(word_idx) + 1 # +1 for nil word
sentence_size = max(query_size, sentence_size) # for the position
sentence_size += 1 # +1 for time words
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
# train/validation/test sets
trainS = []
valS = []
trainQ = []
valQ = []
trainA = []
valA = []
for task in train:
S, Q, A = vectorize_data(task, word_idx, sentence_size, memory_size)
ts, vs, tq, vq, ta, va = cross_validation.train_test_split(S, Q, A, test_size=0.1, random_state=FLAGS.random_state)
trainS.append(ts)
trainQ.append(tq)
trainA.append(ta)
valS.append(vs)
valQ.append(vq)
valA.append(va)
trainS = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainS))
trainQ = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainQ))
trainA = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainA))
valS = reduce(lambda a,b : np.vstack((a,b)), (x for x in valS))
valQ = reduce(lambda a,b : np.vstack((a,b)), (x for x in valQ))
valA = reduce(lambda a,b : np.vstack((a,b)), (x for x in valA))
testS, testQ, testA = vectorize_data(list(chain.from_iterable(test)), word_idx, sentence_size, memory_size)
n_train = trainS.shape[0]
n_val = valS.shape[0]
n_test = testS.shape[0]
print("Training Size", n_train)
print("Validation Size", n_val)
print("Testing Size", n_test)
print(trainS.shape, valS.shape, testS.shape)
print(trainQ.shape, valQ.shape, testQ.shape)
print(trainA.shape, valA.shape, testA.shape)
train_labels = np.argmax(trainA, axis=1)
test_labels = np.argmax(testA, axis=1)
val_labels = np.argmax(valA, axis=1)
tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size
# This avoids feeding 1 task after another, instead each batch has a random sampling of tasks
batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
batches = [(start, end) for start,end in batches]
with tf.Session() as sess:
model = MemN2N(batch_size, vocab_size, sentence_size, memory_size, FLAGS.embedding_size, session=sess,
hops=FLAGS.hops, max_grad_norm=FLAGS.max_grad_norm)
for i in range(1, FLAGS.epochs+1):
# Stepped learning rate
if i - 1 <= FLAGS.anneal_stop_epoch:
anneal = 2.0 ** ((i - 1) // FLAGS.anneal_rate)
else:
anneal = 2.0 ** (FLAGS.anneal_stop_epoch // FLAGS.anneal_rate)
lr = FLAGS.learning_rate / anneal
np.random.shuffle(batches)
total_cost = 0.0
for start, end in batches:
s = trainS[start:end]
q = trainQ[start:end]
a = trainA[start:end]
cost_t = model.batch_fit(s, q, a, lr)
total_cost += cost_t
if i % FLAGS.evaluation_interval == 0:
train_accs = []
for start in range(0, n_train, n_train/20):
end = start + n_train/20
s = trainS[start:end]
q = trainQ[start:end]
pred = model.predict(s, q)
acc = metrics.accuracy_score(pred, train_labels[start:end])
train_accs.append(acc)
val_accs = []
for start in range(0, n_val, n_val/20):
end = start + n_val/20
s = valS[start:end]
q = valQ[start:end]
pred = model.predict(s, q)
acc = metrics.accuracy_score(pred, val_labels[start:end])
val_accs.append(acc)
test_accs = []
for start in range(0, n_test, n_test/20):
end = start + n_test/20
s = testS[start:end]
q = testQ[start:end]
pred = model.predict(s, q)
acc = metrics.accuracy_score(pred, test_labels[start:end])
test_accs.append(acc)
print('-----------------------')
print('Epoch', i)
print('Total Cost:', total_cost)
print()
t = 1
for t1, t2, t3 in zip(train_accs, val_accs, test_accs):
print("Task {}".format(t))
print("Training Accuracy = {}".format(t1))
print("Validation Accuracy = {}".format(t2))
print("Testing Accuracy = {}".format(t3))
print()
t += 1
print('-----------------------')
# Write final results to csv file
if i == FLAGS.epochs:
print('Writing final results to {}'.format(FLAGS.output_file))
df = pd.DataFrame({
'Training Accuracy': train_accs,
'Validation Accuracy': val_accs,
'Testing Accuracy': test_accs
}, index=range(1, 21))
df.index.name = 'Task'
df.to_csv(FLAGS.output_file)