forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialConvolutionCUDA.cu
194 lines (160 loc) · 7.33 KB
/
SpatialConvolutionCUDA.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#ifndef DIVUP
#define DIVUP(x,y) (((x) + (y) - 1) / (y))
#endif
#define MIN(a,b) (a) < (b) ? (a) : (b)
#ifndef assert
#define assert(e) \
if (!(e)) { \
printf("failed assertion `%s'\n", #e); \
THError("aborting..."); \
};
#endif
#include "SpatialConvolutionCUDA/updateOutput.cu"
#include "SpatialConvolutionCUDA/updateGradInput.cu"
#include "SpatialConvolutionCUDA/accGradParameters.cu"
static int cunn_SpatialConvolutionCUDA_updateOutput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor*)luaT_checkudata(L, 2, "torch.CudaTensor");
int dW = luaT_getfieldcheckint(L, 1, "dW");
int dH = luaT_getfieldcheckint(L, 1, "dH");
int padding = luaT_getfieldcheckint(L, 1, "padding");
THCudaTensor *weight = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "weight", "torch.CudaTensor");
THCudaTensor *output = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "output", "torch.CudaTensor");
luaL_argcheck(L, input->nDimension == 4, 2, "4D (batch mode) tensor is expected");
long nOutputPlane = weight->size[3];
long nInputPlane = weight->size[0];
long kH = weight->size[1];
long kW = weight->size[2];
long inputHeight = input->size[1];
long inputWidth = input->size[2];
long batchSize = input->size[3];
long outputHeight = (padding + inputHeight - kH) / dH + 1;
long outputWidth = (padding + inputWidth - kW) / dW + 1;
// resize output
THCudaTensor_resize4d(output, nOutputPlane, outputHeight, outputWidth, batchSize);
// asserts
luaL_argcheck(L, inputWidth == inputHeight, 1, "input must be square");
luaL_argcheck(L, kH == kW, 1, "kH must be equal to kW");
luaL_argcheck(L, dH == dW, 1, "dH must be equal to dW");
// all the data must be contiguous:
luaL_argcheck(L, THCudaTensor_isContiguous(input), 2, "input must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(weight), 1, "weight must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(output), 1, "output must be contiguous");
// raw pointers
float *input_data = THCudaTensor_data(input);
float *weight_data = THCudaTensor_data(weight);
float *output_data = THCudaTensor_data(output);
// convolutions
spatialConv_updateOutput(
input_data, weight_data, output_data,
nInputPlane, inputHeight, inputWidth, batchSize,
nOutputPlane, outputHeight, outputWidth,
kH, kW,
-floor((double)padding/2), dW,
0, 1, true
);
return 1;
}
static int cunn_SpatialConvolutionCUDA_updateGradInput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
int dW = luaT_getfieldcheckint(L, 1, "dW");
int dH = luaT_getfieldcheckint(L, 1, "dH");
int padding = luaT_getfieldcheckint(L, 1, "padding");
THCudaTensor *weight = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "weight", "torch.CudaTensor");
THCudaTensor *gradInput = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "gradInput", "torch.CudaTensor");
long nOutputPlane = weight->size[3];
long nInputPlane = weight->size[0];
long kH = weight->size[1];
long kW = weight->size[2];
long inputHeight = input->size[1];
long inputWidth = input->size[2];
long batchSize = input->size[3];
long outputHeight = (padding + inputHeight - kH) / dH + 1;
long outputWidth = (padding + inputWidth - kW) / dW + 1;
// resize gradInput
THCudaTensor_resize4d(gradInput, nInputPlane, inputHeight, inputWidth, batchSize);
// asserts
luaL_argcheck(L, inputWidth == inputHeight, 1, "input must be square");
luaL_argcheck(L, kH == kW, 1, "kH must be equal to kW");
luaL_argcheck(L, dH == dW, 1, "dH must be equal to dW");
// all the data must be contiguous:
luaL_argcheck(L, THCudaTensor_isContiguous(gradInput), 2, "input must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(weight), 1, "weight must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(gradOutput), 1, "output must be contiguous");
// raw pointers
float *gradInput_data = THCudaTensor_data(gradInput);
float *weight_data = THCudaTensor_data(weight);
float *gradOutput_data = THCudaTensor_data(gradOutput);
// convolutions
spatialConv_updateGradInput(
gradOutput_data, weight_data, gradInput_data,
nInputPlane, inputHeight, inputWidth, batchSize,
nOutputPlane, outputHeight, outputWidth,
kH, kW,
-floor((double)padding/2), dW,
0, 1, true
);
return 1;
}
static int cunn_SpatialConvolutionCUDA_accGradParameters(lua_State *L)
{
THCudaTensor *input = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *gradWeight = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "gradWeight", "torch.CudaTensor");
int dW = luaT_getfieldcheckint(L, 1, "dW");
int dH = luaT_getfieldcheckint(L, 1, "dH");
int padding = luaT_getfieldcheckint(L, 1, "padding");
int partialSum = luaT_getfieldcheckint(L, 1, "partialSum");
float scale = luaL_optnumber(L, 4, 1);
long nOutputPlane = gradWeight->size[3];
long nInputPlane = gradWeight->size[0];
long kH = gradWeight->size[1];
long kW = gradWeight->size[2];
long inputHeight = input->size[1];
long inputWidth = input->size[2];
long batchSize = input->size[3];
long outputHeight = (padding + inputHeight - kH) / dH + 1;
long outputWidth = (padding + inputWidth - kW) / dW + 1;
// asserts
luaL_argcheck(L, inputWidth == inputHeight, 1, "input must be square");
luaL_argcheck(L, kH == kW, 1, "kH must be equal to kW");
luaL_argcheck(L, dH == dW, 1, "dH must be equal to dW");
if (partialSum) {
// compute partial gradients for outputHeight*outputWidth/partialSum groups of filters separately
gradWeight = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "gradWeightPartial", "torch.CudaTensor");
THCudaTensor_resize4d(gradWeight, outputHeight*outputWidth/partialSum, nInputPlane, kH*kW, nOutputPlane);
// numModuleY*numModulesX/partialSum, numFilterColors, filterPixels, numFilters
}
// all the data must be contiguous:
luaL_argcheck(L, THCudaTensor_isContiguous(input), 2, "input must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(gradWeight), 1, "weight must be contiguous");
luaL_argcheck(L, THCudaTensor_isContiguous(gradOutput), 1, "output must be contiguous");
// raw pointers
float *input_data = THCudaTensor_data(input);
float *gradWeight_data = THCudaTensor_data(gradWeight);
float *gradOutput_data = THCudaTensor_data(gradOutput);
// convolutions
spatialConv_accGradParameters(
input_data, gradOutput_data, gradWeight_data,
nInputPlane, inputHeight, inputWidth, batchSize,
nOutputPlane, outputHeight, outputWidth,
kH, kW,
-floor((double)padding/2), dW,
0, scale, partialSum
);
return 0;
}
static const struct luaL_Reg cunn_SpatialConvolutionCUDA__ [] = {
{"SpatialConvolutionCUDA_updateOutput", cunn_SpatialConvolutionCUDA_updateOutput},
{"SpatialConvolutionCUDA_updateGradInput", cunn_SpatialConvolutionCUDA_updateGradInput},
{"SpatialConvolutionCUDA_accGradParameters", cunn_SpatialConvolutionCUDA_accGradParameters},
{NULL, NULL}
};
static void cunn_SpatialConvolutionCUDA_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_SpatialConvolutionCUDA__, "nn");
lua_pop(L,1);
}