Skip to content

Latest commit

 

History

History
120 lines (104 loc) · 6.03 KB

README.md

File metadata and controls

120 lines (104 loc) · 6.03 KB

btor2-opt

Very basic btor2 parser, circuit miter, and code optimizer.

Install

pip install btor2-opt

For nix users

nix-shell -p 'python3.withPackages(ps: with ps; [ black build bumpver click colorama isort lexid looseversion mypy-extensions packaging pathspec pip-tools platformdirs pyproject-hooks toml tomli typing-extensions wheel])'

Test

Unit tests can be run using:

python -m unittest tests/test.py

Overview

This repo contains two main scripts:

  • btoropt: Takes a .btor2 file and a list of pass names as argument and prints out the transformed result.
  • btormiter: Takes a .fir file as input and runs it through firrtl and firtool to obtain two .btor2 designs which are then merged into a single miter circuit before being returned to the user. Note that this requires having firrtl and firtool in your path, specifically a version of firtool that has the --btor2 flag.

The rest of the code can be found in the src folder, which contains a basic parser for btor2 (not entirely complete, but supports anything firtool --btor2 can produce), an internal representation of the language and a simple pass infrastructure, where you can add any of you custom passes.

Supported Instructions

This compiler currently supports the following btor2 instructions:

Instruction Description
<lid> sort <type> <width> Declares a type
<lid> input <sid> <name> Declares an input
<lid> output <out> Declares an output
<lid> bad <cond> Checks the inversion of a condition
<lid> constraint <cond> Assumes a condition
<lid> zero <sid> Declares a 0 constant
<lid> one <sid> Declares a 1 constant
<lid> ones <sid> Declares a bit-string of 1s
<lid> not <sid> <cond> Negates a condition
<lid> constd <sid> <val> Declares a decimal constant
<lid> consth <sid> <val> Declares a hexadecimal constant
<lid> const <sid> <val> Declares a binary constant
<lid> state <sid> <name> Declares a stateful element
<lid> init <sid> <state> <val> Initializes a state
<lid> next <sid> <state> <next> Sets the transition logic of a state
<lid> slice <sid> <op> <w> <lb> Extracts bits [lb:lb+w] from a result
<lid> ite <sid> <cond> <t> <f> If-then-else expression
<lid> implies <sid> <lhs> <rhs> Logical implication
<lid> iff <sid> <lhs> <rhs> If and only if expression
<lid> add/sub/mul <sid> <l> <r> Binary operation
<lid> {s,u}div <sid> <l> <r> Signed or unsigned division
<lid> smod <sid> <l> <r> Signed modulo
<lid> s{l,r}l <sid> <l> <r> Logical shift left/right
<lid> sra <sid> <l> <r> Arithmetic shift right
<lid> and/or/xor <sid> <l> <r> Binary logical operators
<lid> concat <sid> <l> <r> Concatenate two results
<lid> eq/neq <sid> <l> <r> Equality comparators
<lid> {s,u}gt <sid> <l> <r> Signed/Unsigned l > r
<lid> {s,u}gte <sid> <l> <r> Signed/Unsigned l ≥ r
<lid> {s,u}lt <sid> <l> <r> Signed/Unsigned l < r
<lid> {s,u}lte <sid> <l> <r> Signed/Unsigned l ≤ r
<lid> uext <sid> <opid> <w> <name> Unsigned width extension / aliasing

Adding a Pass

Simply create a new class (as its own file) in src/passes that inherits from Pass. Then in the constructor, make sure you give it a name. The pass's logic itself is written by overiding the run(p: list[Instruction]) -> list[Instruction] method. The pass must then be imported in src/passes/passes.py and instantiated in the all_passes list. Passes are grouped either in transforms, which contain all of the passes that transform the AST, and validation, which contains all of the passes used to gurantee the syntactic correctness of the output program.

Here is a simple example pass that renames all inputs to "inp_n".

# Example pass: Simply renames all inputs to inp_<pos>
class RenameInputs(Pass):
    def __init__(self):
        super().__init__("rename-inputs")

    # I chose to have this pass not modify p in place
    # you can also simply modify p and return it
    def run(p: list[Instruction]) -> list[Instruction]:
        i = 0
        res = []
        for inst in p:
            if isinstance(inst, Input):
                res.append(Input(inst.lid, inst.sort, f"inp_{i}"))
                i += 1
            else:
                res.append(inst)
        return res

# Make sure to add an instance of the pass to the all_passes array
all_passes = [RenameInputs()]

This pass can then be called by running:

btoropt ex.btor2 rename-inputs

Custom BTOR2 Extensions

btoropt currently supports custom extensions to the standard btor2 format, enabling the expression of modularity. In order to maintin inter-operability with standard btor2 files, this extension must be explicitly enabled using the --modular flag. These extensions are simply syntactic sugar to enable parallelism and can be lowered to standard btor2. This makes it possible to express the following custom structures:

Structure Description
module <name> {...} Declares a named region of instructions
contract <module_name> {...} Declares a contract for a module

Module bodies support all standard btor2 along with the following custom instructions:

Module Instructions Description
<lid> ref <module_name> <lid_in_module> References an instruction from another module
<lid> inst <module_name> Creates an instance of a module
<lid> set <instance_lid> <ref_lid> <local_lid> Sets an instance reference to a local instruction

Contract bodies support all standard btor2 along with the following custom instructions:

Contract Instructions Description
<lid> ref <module_name> <lid_in_module> References an instruction from the contract's module
<lid> prec <cond_lid> Declares a precondition
<lid> post <cond_lid> Declares a postcondition