-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp2.py
48 lines (38 loc) · 1.55 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask import Flask, request, jsonify
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
app = Flask(__name__)
model_path = "/Users/diegosantosuosso/Desktop/Chat-YorkU/data/zephyr-7b-sft-lora"
tokenizer = AutoTokenizer.from_pretrained(model_path)
print("Running AutoModelForCausalLM...")
model = AutoModelForCausalLM.from_pretrained(model_path)
@app.route('/Answer', methods=['POST'])
def answer():
data = request.get_json(force=True) # Get data from POST request
# Extract the question from the POST data
question = data.get('question', '')
# Use the tokenizer's chat template to format the message
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who is an expert in content about York University",
},
{"role": "user", "content": question},
]
# Prepare the messages for the model
input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
# Generate a response
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
max_new_tokens=2000,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
)
# Decode the generated tokens and return the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return jsonify({'answer': response})
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5001)