diff --git a/.github/workflows/r_tests.yml b/.github/workflows/r_tests.yml index b3d5ad5b1f03..43ad372a1e84 100644 --- a/.github/workflows/r_tests.yml +++ b/.github/workflows/r_tests.yml @@ -46,8 +46,8 @@ jobs: uses: actions/cache@v4 with: path: ${{ env.R_LIBS_USER }} - key: ${{ runner.os }}-r-${{ matrix.r }}-7-${{ hashFiles('R-package/DESCRIPTION') }} - restore-keys: ${{ runner.os }}-r-${{ matrix.r }}-7-${{ hashFiles('R-package/DESCRIPTION') }} + key: ${{ runner.os }}-r-${{ matrix.r }}-8-${{ hashFiles('R-package/DESCRIPTION') }} + restore-keys: ${{ runner.os }}-r-${{ matrix.r }}-8-${{ hashFiles('R-package/DESCRIPTION') }} - uses: actions/setup-python@v5 with: python-version: "3.10" diff --git a/CMakeLists.txt b/CMakeLists.txt index 0abe69821d14..761aef49d4dc 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -497,7 +497,8 @@ if(GOOGLE_TEST) configure_file( ${xgboost_SOURCE_DIR}/tests/cli/machine.conf.in ${xgboost_BINARY_DIR}/tests/cli/machine.conf - @ONLY) + @ONLY + NEWLINE_STYLE UNIX) if(BUILD_DEPRECATED_CLI) add_test( NAME TestXGBoostCLI diff --git a/cmake/Version.cmake b/cmake/Version.cmake index 4af6b27d6720..1a7fae3d7645 100644 --- a/cmake/Version.cmake +++ b/cmake/Version.cmake @@ -2,5 +2,7 @@ function(write_version) message(STATUS "xgboost VERSION: ${xgboost_VERSION}") configure_file( ${xgboost_SOURCE_DIR}/cmake/version_config.h.in - ${xgboost_SOURCE_DIR}/include/xgboost/version_config.h @ONLY) + ${xgboost_SOURCE_DIR}/include/xgboost/version_config.h + @ONLY + NEWLINE_STYLE UNIX) endfunction() diff --git a/doc/tutorials/model.rst b/doc/tutorials/model.rst index 97171fc3c437..d4e04262d214 100644 --- a/doc/tutorials/model.rst +++ b/doc/tutorials/model.rst @@ -146,7 +146,7 @@ It remains to ask: which tree do we want at each step? A natural thing is to ad .. math:: - \text{obj}^{(t)} & = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^t\omega(f_i) \\ + \text{obj}^{(t)} & = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t)}) + \sum_{k=1}^t\omega(f_k) \\ & = \sum_{i=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \omega(f_t) + \mathrm{constant} If we consider using mean squared error (MSE) as our loss function, the objective becomes