Skip to content

Latest commit

 

History

History

sign

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

SIGN: Scalable Inception Graph Neural Network

Paper: https://arxiv.org/abs/2004.11198

Dependencies

  • pytorch 1.5
  • dgl 0.5 nightly build
    • pip install --pre dgl
  • ogb 1.2.3

How to run

ogbn-products

python3 sign.py --dataset ogbn-products --eval-ev 10 --R 5 --input-d 0.3 --num-h 512 \
    --dr 0.4 --lr 0.001 --batch-size 50000 --num-runs 10

ogbn-arxiv

python3 sign.py --dataset ogbn-arxiv --eval-ev 10 --R 5 --input-d 0.1 --num-h 512 \
    --dr 0.5 --lr 0.001 --eval-b 100000 --num-runs 10

ogbn-mag

ogbn-mag is a heterogeneous graph and the task is to predict publishing venue of papers. Since SIGN model is designed for homogeneous graph, we simply ignore heterogeneous information (i.e. node and edge types) and treat the graph as a homogeneous one. For node types that don't have input feature, we featurize them with the average of their neighbors' features.

python3 sign.py --dataset ogbn-mag --eval-ev 10 --R 5 --input-d 0 --num-h 512 \
    --dr 0.5 --lr 0.001 --batch-size 50000 --num-runs 10

Results

Table below shows the average and standard deviation (over 10 times) of accuracy. Experiments were performed on Tesla T4 (15GB) GPU on Oct 29.

Dataset Test Accuracy Validation Accuracy # Params
ogbn-products 0.8052±0.0016 0.9299±0.0004 3,483,703
ogbn-arxiv 0.7195±0.0011 0.7323±0.0006 3,566,128
ogbn-mag 0.4046±0.0012 0.4068±0.0010 3,724,645