-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
339 lines (269 loc) · 12.6 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import argparse
from functools import partial
import contextlib
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, stride=1)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
class GenericModel:
def __init__(self):
self.is_train = True
def train(self, is_train: bool = True):
self.is_train = is_train
class ReferenceModel(GenericModel):
def __init__(self, net_factory, optimizer_factory, lr_scheduler_factory, loss_functor):
super().__init__()
self.net_factory = net_factory
self.optimizer_factory = optimizer_factory
self.lr_scheduler_factory = lr_scheduler_factory
self.loss_functor = loss_functor
self.model: nn.Module = net_factory()
self.optimizer = optimizer_factory(self.model.parameters())
self.scheduler = self.lr_scheduler_factory(self.optimizer)
def step(self, data, target, no_grad=False, dry_run=False):
if not no_grad:
self.optimizer.zero_grad()
with torch.no_grad() if no_grad else contextlib.nullcontext():
output = self.model(data)
loss = self.loss_functor(output, target)
if not no_grad:
loss.backward()
if not dry_run and not no_grad:
self.optimizer.step()
return dict(loss=loss.item(), output=output.detach())
def get_model(self):
return self.model
def named_parameters(self):
return self.model.named_parameters()
def train(self, is_train: bool = True):
super().train(is_train)
self.model.train(is_train)
def lr_scheduler_step(self):
self.scheduler.step()
class DataparallelModel(GenericModel):
def __init__(self, net_factory, optimizer_factory, lr_scheduler_factory,
loss_functor, num_replicas, reference_model=None):
super().__init__()
self.net_factory = net_factory
self.optimizer_factory = optimizer_factory
self.lr_scheduler_factory = lr_scheduler_factory
self.loss_functor = loss_functor
self.num_replicas = num_replicas
models = []
optimizers = []
schedulers = []
for i_replica in range(num_replicas):
model = net_factory()
models.append(model)
optimizer = self.optimizer_factory(model.parameters())
optimizers.append(optimizer)
scheduler = self.lr_scheduler_factory(optimizer)
schedulers.append(scheduler)
self.models = models
self.optimizers = optimizers
self.schedulers = schedulers
self.master_model_idx = 0
if reference_model is not None:
# If a reference model is given, broadcast it
for param_group, ref_param in \
zip(self.param_group_gen(), reference_model.named_parameters()):
for param in param_group:
param.data[...] = ref_param[1].data[...]
else:
# If there is no reference model, broadcast weights of the master model
for param_group in self.param_group_gen():
assert self.master_model_idx == 0
for param in param_group[1:]:
param.data[...] = param_group[self.master_model_idx].data[...]
def param_group_gen(self):
param_groups = [m.parameters() for m in self.models]
for group in zip(*param_groups):
yield group
def step(self, data, target, no_grad=False, dry_run=False):
assert len(data) % self.num_replicas == 0
offset = len(data) // self.num_replicas
losses = []
outputs = []
for i_replica, (model, optimizer) in enumerate(zip(self.models, self.optimizers)):
data_rep = data[i_replica*offset:(i_replica+1)*offset]
target_rep = target[i_replica*offset:(i_replica+1)*offset]
if not no_grad:
optimizer.zero_grad()
with torch.no_grad() if no_grad else contextlib.nullcontext():
output = model(data_rep)
loss = self.loss_functor(output, target_rep)
if not no_grad:
loss.backward()
losses.append(loss.item())
outputs.append(output.detach())
total_loss = np.mean(np.array(losses))
outputs = torch.cat(outputs, dim=0)
if not no_grad:
for param_group in self.param_group_gen():
param_group_data = tuple(p.grad for p in param_group)
# Modify gradient allreduce here
# Below is a star-allreduce implementation. Replace it with your own.
reduced_tensor = torch.mean(torch.stack(param_group_data, dim=0), dim=0)
for grad in param_group_data:
grad[...] = reduced_tensor[...]
if not dry_run and not no_grad:
for i_replica, (model, optimizer) in enumerate(zip(self.models, self.optimizers)):
optimizer.step()
# check all replica weights are identical
return dict(loss=total_loss, pred=outputs)
def named_parameters(self):
assert len(self.models) > 0
return self.models[self.master_model_idx].named_parameters()
def get_model(self):
assert len(self.models) > 0
return self.models[self.master_model_idx]
def train(self, is_train: bool = True):
super().train(is_train)
for model in self.models:
model.train(is_train)
def lr_scheduler_step(self):
for scheduler in self.schedulers:
scheduler.step()
class Trainer:
def __init__(self, args):
self.args = args
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
self.device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
self.dataset_train = datasets.MNIST('../data', train=False, download=True, transform=transform)
self.dataset_val = datasets.MNIST('../data', train=False, transform=transform)
shrink_dataset = True
if shrink_dataset:
train_data_size = 2000
val_data_size = 1000
def _shrink_dataset(dataset, size):
dataset.data = dataset.data[:size]
dataset.targets = dataset.targets[:size]
_shrink_dataset(self.dataset_train, train_data_size)
_shrink_dataset(self.dataset_val, val_data_size)
self.train_loader = torch.utils.data.DataLoader(self.dataset_train, **train_kwargs)
self.test_loader = torch.utils.data.DataLoader(self.dataset_val, **test_kwargs)
def net_factory():
return Net()
def optimizer_factory(params):
return optim.Adadelta(params, lr=args.lr)
self.loss_func = partial(F.nll_loss, reduction="mean")
def lr_scheduler_factory(optimizer):
return StepLR(optimizer, step_size=1, gamma=args.gamma)
self.reference_model = ReferenceModel(net_factory, optimizer_factory,
lr_scheduler_factory, self.loss_func)
num_replicas = args.num_replicas
self.dataparallel_model = DataparallelModel(net_factory, optimizer_factory, lr_scheduler_factory,
self.loss_func, num_replicas,
reference_model=self.reference_model.get_model())
def train(self):
for epoch in range(1, self.args.epochs + 1):
self.train_epoch(epoch)
self.test()
self.reference_model.lr_scheduler_step()
self.dataparallel_model.lr_scheduler_step()
if self.args.save_model:
torch.save(self.reference_model.get_model().state_dict(), "mnist_cnn_ref.pt")
torch.save(self.dataparallel_model.get_model().state_dict(), "mnist_cnn_ref.pt")
def train_epoch(self, epoch):
self.reference_model.train(True)
self.dataparallel_model.train(True)
for batch_idx, (data, target) in enumerate(self.train_loader):
data, target = data.to(self.device), target.to(self.device)
step_info_ref = self.reference_model.step(data, target)
ref_loss = step_info_ref["loss"]
step_info_dp = self.dataparallel_model.step(data, target)
dp_loss = step_info_dp["loss"]
if batch_idx % self.args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tRef loss: {:.6f}\tDP loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(self.train_loader.dataset),
100. * batch_idx / len(self.train_loader), ref_loss, dp_loss))
def test(self):
self.dataparallel_model.train(False)
test_loss = 0
correct = 0
for data, target in self.test_loader:
data, target = data.to(self.device), target.to(self.device)
step_info_dp = self.dataparallel_model.step(data, target, no_grad=True)
test_loss += step_info_dp["loss"] # sum up batch loss
pred = step_info_dp["pred"].argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(self.test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(self.test_loader.dataset),
100. * correct / len(self.test_loader.dataset)))
def parse_args(external_args=None):
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--num-replicas', type=int, default=4, metavar='N',
help='number of dataparallel replicas (default: 4)')
if external_args is not None:
args = parser.parse_args(external_args)
else:
args = parser.parse_args()
return args
def main():
args = parse_args()
trainer = Trainer(args)
trainer.train()
if __name__ == '__main__':
main()