-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdemo.py
41 lines (30 loc) · 1.14 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from BackPropagationNN import NeuralNetwork
from sklearn import datasets
from sklearn import preprocessing
from sklearn import model_selection
from sklearn import metrics
def targetToVector(x):
# Vector
a = np.zeros([len(x),10])
for i in range(0,len(x)):
a[i,x[i]] = 1
return a
if __name__ == '__main__':
# Digits dataset loading
digits = datasets.load_digits()
X = preprocessing.scale(digits.data.astype(float))
y = targetToVector(digits.target)
# Cross valitation
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=0)
# Neural Network initialization
NN = NeuralNetwork(64,60,10, output_act = 'softmax')
NN.fit(X_train,y_train, epochs = 50, learning_rate = .1, learning_rate_decay = .01, verbose = 1)
# NN predictions
y_predicted = NN.predict(X_test)
# Metrics
y_predicted = np.argmax(y_predicted, axis=1).astype(int)
y_test = np.argmax(y_test, axis=1).astype(int)
print("\nClassification report for classifier:\n\n%s\n"
% (metrics.classification_report(y_test, y_predicted)))
print("Confusion matrix:\n\n%s" % metrics.confusion_matrix(y_test, y_predicted))