-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
113 lines (91 loc) · 3.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torchvision
import numpy as np
import os
import cv2 as cv
class SampleDataset(Dataset):
def __init__(self, sample_dir, target_dir, transform=None):
self.sample_dir = sample_dir
self.target_dir = target_dir
self.transform = transform
self.samples = os.listdir(sample_dir)
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
sample_path = os.path.join(self.sample_dir, self.samples[index])
target_path = os.path.join(self.target_dir, self.samples[index].replace('.npy', '.png'))
sample = np.load(sample_path)
sample = sample.transpose((2,0,1))
target = cv.imread(target_path, cv.IMREAD_GRAYSCALE).astype(np.float32)
target = target/255.
if self.transform is not None:
augmentations = self.transform(sample=sample, target=target)
sample = augmentations['sample']
target = augmentations['target']
return sample, target
def save_checkpoint(state, filename="my_checkpoint.pth.tar"):
print("=> Saving checkpoint")
torch.save(state, filename)
def load_checkpoint(checkpoint, model):
print("=> Loading checkpoint")
model.load_state_dict(checkpoint["state_dict"])
def get_loaders(
train_dir,
train_targetdir,
val_dir,
val_targetdir,
batch_size,
num_workers=4,
pin_memory=True,
train_transform=None,
val_transform=None,
):
train_ds = SampleDataset(sample_dir=train_dir,
target_dir=train_targetdir,)
train_loader = DataLoader(train_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=False,)
val_ds = SampleDataset(sample_dir=val_dir,
target_dir=val_targetdir,)
val_loader = DataLoader(val_ds,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=False,)
return train_loader, val_loader
def check_accuracy(loader, model, device='cuda'):
model.eval()
loss = nn.MSELoss()
loss_list = []
with torch.no_grad():
for x, y in loader:
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.float32).unsqueeze(1)
preds = model(x)
loss_value = loss(preds, y)
loss_list.append(loss_value.detach().cpu().numpy())
loss_avg = np.sum(loss_list)/len(loss_list)
print(f'loss = {loss_avg}')
model.train()
return loss_avg
def save_predicitons_as_imgs(
loader, model, folder = 'saved_predicted_images/', device='cuda'
):
model.eval()
for idx, (x,y) in enumerate(loader):
x = x.to(device=device, dtype=torch.float32)
with torch.no_grad():
preds = model(x)
preds = preds.float()
torchvision.utils.save_image(preds, f'{folder}/pred_{idx}.png')
torchvision.utils.save_image(y.unsqueeze(1), f'{folder}/true_{idx}.png')
model.train()
# xavier initialization
def init_weights(m):
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_uniform_(m.weight)