forked from romwell/nvTrees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
43 lines (43 loc) · 1.91 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
<HTML>
<HEAD>
<TITLE>nvTrees - computational system for Thompson groups F, T, V, 2V, nV | Roman Kogan | Texas A&M </TITLE>
</HEAD>
<BODY bgcolor="#FDFDF0">
<center><h2>nvTrees</h2>
<a href="../">Roman Kogan</a>, Texas A&M <a href="mailto:[email protected]">(e-mail me)</a></center><p>
<center>A computational system for Thompson groups F, T, V and multi-dimensional Thompson groups Vn.</center>
<ul>
<li><b>Download:</b> <a href="nvTrees.jar">nvTrees.jar</a> [Stand-alone Java executable]. Requires
<a href="http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html">
JRE v8</a> to run.
<li>Basic instructions for using the program are <a href="help.html">here</a>.
<li>Algorithms and math background: see the
<a href="../slides_posters/nvTrees_Paris_2015_Poster.pdf">poster about this project</a> [PDF].
<li>For a general introduction to Thompson groups, see <a href="http://www.math.binghamton.edu/matt/thompson/cfp.pdf">CFP</a>.
The program uses a notation compatible with the examples of that paper.
<li>Source code : <a href="https://github.com/romwell/nvTrees">on GitHub</a>.
<li>With extra tweaking, you can also <a href="applet.html">run nvTrees as a Java applet</a> in your browser.
As Oracle is dropping support for applets, this is no longer the recommended option.
<li>
<table>
<tr valign="top"><td width="45%">
<b>Screenshot:</b>
<br><img src="nvTrees_screenshot.png">
</td><td width="45%">
<b>Functionality:</b>
<ul>
<li>Compute products of elements of Thompson groups, output reduced tree pair (group multiplication)
<li>Compute conjugations, commutators, etc
<li>Visualize elements of Thompson groups:
<ul>
<li>Tree pairs for elements of F, T, V, .., nV
<li>Pattern pairs for elements of 2V
<li>Rectangular diagrams for elements of F
</ul>
<li>Compute the growth function #(n) up to a specified value of n and given generators
</ul>
</td>
</table>
</ul>
</BODY>
</HTML>