|
| 1 | +""" |
| 2 | +The GOOD-Motif dataset motivated by `Spurious-Motif |
| 3 | +<https://arxiv.org/abs/2201.12872>`_. |
| 4 | +""" |
| 5 | +import math |
| 6 | +import os |
| 7 | +import os.path as osp |
| 8 | +import random |
| 9 | + |
| 10 | +import gdown |
| 11 | +import torch |
| 12 | +from munch import Munch |
| 13 | +from torch_geometric.data import InMemoryDataset, extract_zip |
| 14 | +from torch_geometric.utils import from_networkx |
| 15 | +from tqdm import tqdm |
| 16 | + |
| 17 | +from GOOD import register |
| 18 | +from GOOD.utils.synthetic_data.BA3_loc import * |
| 19 | +from GOOD.utils.synthetic_data import synthetic_structsim |
| 20 | + |
| 21 | + |
| 22 | +@register.dataset_register |
| 23 | +class FPIIFMotif(InMemoryDataset): |
| 24 | + r""" |
| 25 | + The GOOD-Motif dataset motivated by `Spurious-Motif |
| 26 | + <https://arxiv.org/abs/2201.12872>`_. |
| 27 | +
|
| 28 | + Args: |
| 29 | + root (str): The dataset saving root. |
| 30 | + domain (str): The domain selection. Allowed: 'basis' and 'size'. |
| 31 | + shift (str): The distributional shift we pick. Allowed: 'no_shift', 'covariate', and 'concept'. |
| 32 | + subset (str): The split set. Allowed: 'train', 'id_val', 'id_test', 'val', and 'test'. When shift='no_shift', |
| 33 | + 'id_val' and 'id_test' are not applicable. |
| 34 | + generate (bool): The flag for regenerating dataset. True: regenerate. False: download. |
| 35 | + """ |
| 36 | + |
| 37 | + def __init__(self, root: str, domain: str, shift: str = 'no_shift', subset: str = 'train', transform=None, |
| 38 | + pre_transform=None, generate: bool = False): |
| 39 | + |
| 40 | + self.name = self.__class__.__name__ |
| 41 | + self.domain = domain |
| 42 | + self.metric = 'Accuracy' |
| 43 | + self.task = 'Multi-label classification' |
| 44 | + self.url = '' |
| 45 | + |
| 46 | + self.generate = generate |
| 47 | + |
| 48 | + # self.all_basis = ["wheel", "tree", "ladder", "star", "path"] |
| 49 | + # self.basis_role_end = {'wheel': 0, 'tree': 0, 'ladder': 0, 'star': 1, 'path': 1} |
| 50 | + self.all_basis = ["wheel", "tree", "ladder", "circular_ladder", "dorogovtsev_goltsev_mendes", "star", "path"] |
| 51 | + self.basis_role_end = {'wheel': 0, 'tree': 0, 'ladder': 0, 'circular_ladder': 0, |
| 52 | + 'dorogovtsev_goltsev_mendes': 0, 'star': 1, 'path': 1} |
| 53 | + self.all_motifs = [[["house"]], [["dircycle"]], [["crane"]]] |
| 54 | + self.num_data = 3000 |
| 55 | + |
| 56 | + super().__init__(root, transform, pre_transform) |
| 57 | + subset_pt = 0 |
| 58 | + if shift == 'concept': |
| 59 | + subset_pt += 0 |
| 60 | + elif shift == 'FIIF': |
| 61 | + subset_pt += 5 |
| 62 | + elif shift == 'PIIF': |
| 63 | + subset_pt += 10 |
| 64 | + |
| 65 | + if subset == 'train': |
| 66 | + subset_pt += 0 |
| 67 | + elif subset == 'val': |
| 68 | + subset_pt += 1 |
| 69 | + elif subset == 'test': |
| 70 | + subset_pt += 2 |
| 71 | + elif subset == 'id_val': |
| 72 | + subset_pt += 3 |
| 73 | + else: |
| 74 | + subset_pt += 4 |
| 75 | + |
| 76 | + self.data, self.slices = torch.load(self.processed_paths[subset_pt]) |
| 77 | + |
| 78 | + @property |
| 79 | + def raw_dir(self): |
| 80 | + return osp.join(self.root) |
| 81 | + |
| 82 | + def _download(self): |
| 83 | + if os.path.exists(osp.join(self.raw_dir, self.name)) or self.generate: |
| 84 | + return |
| 85 | + if not os.path.exists(self.raw_dir): |
| 86 | + os.makedirs(self.raw_dir) |
| 87 | + self.download() |
| 88 | + |
| 89 | + def download(self): |
| 90 | + path = gdown.download(self.url, output=osp.join(self.raw_dir, self.name + '.zip'), fuzzy=True) |
| 91 | + extract_zip(path, self.raw_dir) |
| 92 | + os.unlink(path) |
| 93 | + |
| 94 | + @property |
| 95 | + def processed_dir(self): |
| 96 | + return osp.join(self.root, self.name, self.domain, 'processed') |
| 97 | + |
| 98 | + @property |
| 99 | + def processed_file_names(self): |
| 100 | + return ['concept_train.pt', 'concept_val.pt', 'concept_test.pt', 'concept_id_val.pt', 'concept_id_test.pt', |
| 101 | + 'FIIF_train.pt', 'FIIF_val.pt', 'FIIF_test.pt', 'FIIF_id_val.pt', 'FIIF_id_test.pt', |
| 102 | + 'PIIF_train.pt', 'PIIF_val.pt', 'PIIF_test.pt', 'PIIF_id_val.pt', 'PIIF_id_test.pt'] |
| 103 | + |
| 104 | + def gen_data(self, basis_id, width_basis, motif_id, y=None): |
| 105 | + basis_type = self.all_basis[basis_id] |
| 106 | + if basis_type == 'tree': |
| 107 | + width_basis = int(math.log2(width_basis)) - 1 |
| 108 | + if width_basis <= 0: |
| 109 | + width_basis = 1 |
| 110 | + if basis_type == 'dorogovtsev_goltsev_mendes': |
| 111 | + width_basis = math.ceil(math.log(width_basis, 3)) |
| 112 | + if width_basis <= 0: |
| 113 | + width_basis = 1 |
| 114 | + list_shapes = self.all_motifs[motif_id] |
| 115 | + G, role_id, _ = synthetic_structsim.build_graph( |
| 116 | + width_basis, basis_type, list_shapes, start=0, rdm_basis_plugins=True |
| 117 | + ) |
| 118 | + G = perturb([G], 0.05, id=role_id)[0] |
| 119 | + # from GOOD.causal_engine.graph_visualize import plot_graph |
| 120 | + # print(G.edges()) |
| 121 | + # plot_graph(G, colors=[1 for _ in G.nodes()]) |
| 122 | + |
| 123 | + # --- Convert networkx graph into pyg data --- |
| 124 | + data = from_networkx(G) |
| 125 | + data.x = torch.ones((data.num_nodes, 1)) |
| 126 | + role_id = torch.tensor(role_id, dtype=torch.long) |
| 127 | + role_id[role_id <= self.basis_role_end[basis_type]] = 0 |
| 128 | + role_id[role_id != 0] = 1 |
| 129 | + |
| 130 | + edge_gt = torch.stack([role_id[data.edge_index[0]], role_id[data.edge_index[1]]]).sum(0) > 1.5 |
| 131 | + |
| 132 | + data.node_gt = role_id |
| 133 | + data.edge_gt = edge_gt |
| 134 | + data.basis_id = basis_id |
| 135 | + data.motif_id = motif_id |
| 136 | + |
| 137 | + # --- noisy labels --- |
| 138 | + if y is None: |
| 139 | + if random.random() < 0.1: |
| 140 | + data.y = random.randint(0, 2) |
| 141 | + else: |
| 142 | + data.y = motif_id |
| 143 | + else: |
| 144 | + data.y = y |
| 145 | + |
| 146 | + return data |
| 147 | + |
| 148 | + def get_basis_concept_list(self, num_data=60000): |
| 149 | + # data_list = [] |
| 150 | + train_ratio = 0.6 |
| 151 | + val_ratio = 0.2 |
| 152 | + test_ratio = 0.2 |
| 153 | + num_train = int(num_data * train_ratio) |
| 154 | + num_val = int(num_data * val_ratio) |
| 155 | + num_test = int(num_data * test_ratio) |
| 156 | + train_spurious_ratio = [0.99, 0.97, 0.95] |
| 157 | + val_spurious_ratio = [0.3] |
| 158 | + test_spurious_ratio = [0.0] |
| 159 | + train_list = [] |
| 160 | + for spur_id in tqdm(range(len(train_spurious_ratio))): |
| 161 | + for i in range(num_train // len(train_spurious_ratio)): |
| 162 | + motif_id = random.randint(0, 2) |
| 163 | + width_basis = 10 + np.random.random_integers(-5, 5) |
| 164 | + if random.random() < train_spurious_ratio[spur_id]: |
| 165 | + basis_id = motif_id |
| 166 | + else: |
| 167 | + basis_id = random.randint(0, 2) |
| 168 | + data = self.gen_data(basis_id=basis_id, width_basis=width_basis, motif_id=motif_id) |
| 169 | + data.env_id = torch.LongTensor([basis_id]) |
| 170 | + train_list.append(data) |
| 171 | + |
| 172 | + val_list = [] |
| 173 | + for i in range(num_val): |
| 174 | + motif_id = random.randint(0, 2) |
| 175 | + width_basis = 10 + np.random.random_integers(-5, 5) |
| 176 | + if random.random() < val_spurious_ratio[0]: |
| 177 | + basis_id = motif_id |
| 178 | + else: |
| 179 | + basis_id = random.randint(0, 2) |
| 180 | + data = self.gen_data(basis_id=basis_id, width_basis=width_basis, motif_id=motif_id) |
| 181 | + val_list.append(data) |
| 182 | + |
| 183 | + test_list = [] |
| 184 | + for i in range(num_test): |
| 185 | + motif_id = random.randint(0, 2) |
| 186 | + width_basis = 10 + np.random.random_integers(-5, 5) |
| 187 | + if random.random() < test_spurious_ratio[0]: |
| 188 | + basis_id = motif_id |
| 189 | + else: |
| 190 | + basis_id = random.randint(0, 2) |
| 191 | + data = self.gen_data(basis_id=basis_id, width_basis=width_basis, motif_id=motif_id) |
| 192 | + test_list.append(data) |
| 193 | + |
| 194 | + id_test_ratio = 0.15 |
| 195 | + num_id_test = int(len(train_list) * id_test_ratio) |
| 196 | + random.shuffle(train_list) |
| 197 | + train_list, id_val_list, id_test_list = train_list[: -2 * num_id_test], \ |
| 198 | + train_list[-2 * num_id_test: - num_id_test], train_list[- num_id_test:] |
| 199 | + |
| 200 | + all_env_list = [train_list, val_list, test_list, id_val_list, id_test_list] |
| 201 | + |
| 202 | + return all_env_list |
| 203 | + |
| 204 | + def get_basis_FIIF_list(self, num_data=60000): |
| 205 | + train_ratio = 0.8 |
| 206 | + val_ratio = 0.1 |
| 207 | + test_ratio = 0.1 |
| 208 | + train_num = int(num_data * train_ratio) |
| 209 | + val_num = int(num_data * val_ratio) |
| 210 | + test_num = int(num_data * test_ratio) |
| 211 | + split_num = [train_num, val_num, test_num] |
| 212 | + all_width_basis = [10, 20, 30] |
| 213 | + all_split_list = [[] for _ in range(3)] |
| 214 | + for split_id in range(3): |
| 215 | + for _ in range(split_num[split_id]): |
| 216 | + motif_id = random.randint(0, 2) |
| 217 | + if split_id == 0: |
| 218 | + basis_id = random.randint(0, 2) |
| 219 | + else: |
| 220 | + basis_id = split_id + 2 |
| 221 | + |
| 222 | + # --- G_C controls G_S's width --- |
| 223 | + width_basis = all_width_basis[motif_id] + random.randint(-5, 5) |
| 224 | + data = self.gen_data(basis_id=basis_id, width_basis=width_basis, motif_id=motif_id) |
| 225 | + data.env_id = torch.LongTensor([basis_id]) |
| 226 | + all_split_list[split_id].append(data) |
| 227 | + |
| 228 | + train_list = all_split_list[0] |
| 229 | + num_id_test = int(num_data * test_ratio) |
| 230 | + random.shuffle(train_list) |
| 231 | + train_list, id_val_list, id_test_list = train_list[: -2 * num_id_test], \ |
| 232 | + train_list[-2 * num_id_test: - num_id_test], train_list[- num_id_test:] |
| 233 | + |
| 234 | + ood_val_list = all_split_list[1] |
| 235 | + ood_test_list = all_split_list[2] |
| 236 | + |
| 237 | + all_env_list = [train_list, ood_val_list, ood_test_list, id_val_list, id_test_list] |
| 238 | + |
| 239 | + return all_env_list |
| 240 | + |
| 241 | + def get_basis_PIIF_list(self, num_data=60000): |
| 242 | + train_ratio = 0.8 |
| 243 | + val_ratio = 0.1 |
| 244 | + test_ratio = 0.1 |
| 245 | + train_num = int(num_data * train_ratio) |
| 246 | + val_num = int(num_data * val_ratio) |
| 247 | + test_num = int(num_data * test_ratio) |
| 248 | + split_num = [train_num, val_num, test_num] |
| 249 | + all_width_basis = [10, 20, 30] |
| 250 | + all_split_list = [[] for _ in range(3)] |
| 251 | + for split_id in range(3): |
| 252 | + for _ in range(split_num[split_id]): |
| 253 | + motif_id = random.randint(0, 2) |
| 254 | + if split_id == 0: |
| 255 | + basis_id = random.randint(0, 2) |
| 256 | + else: |
| 257 | + basis_id = split_id + 2 |
| 258 | + |
| 259 | + # --- get y --- |
| 260 | + if random.random() < 0.1: |
| 261 | + data_y = random.randint(0, 2) |
| 262 | + else: |
| 263 | + data_y = motif_id |
| 264 | + |
| 265 | + # --- y controls G_S's width --- |
| 266 | + width_basis = all_width_basis[data_y] + random.randint(-5, 5) |
| 267 | + |
| 268 | + data = self.gen_data(basis_id=basis_id, width_basis=width_basis, motif_id=motif_id, y=data_y) |
| 269 | + data.env_id = torch.LongTensor([basis_id]) |
| 270 | + all_split_list[split_id].append(data) |
| 271 | + |
| 272 | + train_list = all_split_list[0] |
| 273 | + num_id_test = int(num_data * test_ratio) |
| 274 | + random.shuffle(train_list) |
| 275 | + train_list, id_val_list, id_test_list = train_list[: -2 * num_id_test], \ |
| 276 | + train_list[-2 * num_id_test: - num_id_test], train_list[- num_id_test:] |
| 277 | + |
| 278 | + ood_val_list = all_split_list[1] |
| 279 | + ood_test_list = all_split_list[2] |
| 280 | + |
| 281 | + all_env_list = [train_list, ood_val_list, ood_test_list, id_val_list, id_test_list] |
| 282 | + |
| 283 | + return all_env_list |
| 284 | + |
| 285 | + def process(self): |
| 286 | + |
| 287 | + if self.domain == 'basis': |
| 288 | + concept_shift_list = self.get_basis_concept_list(self.num_data) |
| 289 | + print("#IN#concept shift done!") |
| 290 | + FIIF_shift_list = self.get_basis_FIIF_list(self.num_data) |
| 291 | + print("#IN#FIIF shift done!") |
| 292 | + PIIF_shift_list = self.get_basis_PIIF_list(self.num_data) |
| 293 | + print("#IN#PIIF shift done!") |
| 294 | + else: |
| 295 | + raise ValueError(f'Dataset domain cannot be "{self.domain}"') |
| 296 | + all_shift_list = concept_shift_list + FIIF_shift_list + PIIF_shift_list |
| 297 | + for i, final_data_list in enumerate(all_shift_list): |
| 298 | + data, slices = self.collate(final_data_list) |
| 299 | + torch.save((data, slices), self.processed_paths[i]) |
| 300 | + |
| 301 | + @staticmethod |
| 302 | + def load(dataset_root: str, domain: str, shift: str = 'no_shift', generate: bool = False): |
| 303 | + r""" |
| 304 | + A staticmethod for dataset loading. This method instantiates dataset class, constructing train, id_val, id_test, |
| 305 | + ood_val (val), and ood_test (test) splits. Besides, it collects several dataset meta information for further |
| 306 | + utilization. |
| 307 | +
|
| 308 | + Args: |
| 309 | + dataset_root (str): The dataset saving root. |
| 310 | + domain (str): The domain selection. Allowed: 'degree' and 'time'. |
| 311 | + shift (str): The distributional shift we pick. Allowed: 'no_shift', 'covariate', and 'concept'. |
| 312 | + generate (bool): The flag for regenerating dataset. True: regenerate. False: download. |
| 313 | +
|
| 314 | + Returns: |
| 315 | + dataset or dataset splits. |
| 316 | + dataset meta info. |
| 317 | + """ |
| 318 | + meta_info = Munch() |
| 319 | + meta_info.dataset_type = 'syn' |
| 320 | + meta_info.model_level = 'graph' |
| 321 | + |
| 322 | + train_dataset = FPIIFMotif(root=dataset_root, |
| 323 | + domain=domain, shift=shift, subset='train', generate=generate) |
| 324 | + id_val_dataset = FPIIFMotif(root=dataset_root, |
| 325 | + domain=domain, shift=shift, subset='id_val', generate=generate) if shift != 'no_shift' else None |
| 326 | + id_test_dataset = FPIIFMotif(root=dataset_root, |
| 327 | + domain=domain, shift=shift, subset='id_test', generate=generate) if shift != 'no_shift' else None |
| 328 | + val_dataset = FPIIFMotif(root=dataset_root, |
| 329 | + domain=domain, shift=shift, subset='val', generate=generate) |
| 330 | + test_dataset = FPIIFMotif(root=dataset_root, |
| 331 | + domain=domain, shift=shift, subset='test', generate=generate) |
| 332 | + |
| 333 | + meta_info.dim_node = train_dataset.num_node_features |
| 334 | + meta_info.dim_edge = train_dataset.num_edge_features |
| 335 | + |
| 336 | + meta_info.num_envs = torch.unique(train_dataset.data.env_id).shape[0] |
| 337 | + |
| 338 | + # Define networks' output shape. |
| 339 | + if train_dataset.task == 'Binary classification': |
| 340 | + meta_info.num_classes = train_dataset.data.y.shape[1] |
| 341 | + elif train_dataset.task == 'Regression': |
| 342 | + meta_info.num_classes = 1 |
| 343 | + elif train_dataset.task == 'Multi-label classification': |
| 344 | + meta_info.num_classes = torch.unique(train_dataset.data.y).shape[0] |
| 345 | + |
| 346 | + # --- clear buffer dataset._data_list --- |
| 347 | + train_dataset._data_list = None |
| 348 | + if id_val_dataset: |
| 349 | + id_val_dataset._data_list = None |
| 350 | + id_test_dataset._data_list = None |
| 351 | + val_dataset._data_list = None |
| 352 | + test_dataset._data_list = None |
| 353 | + |
| 354 | + return {'train': train_dataset, 'id_val': id_val_dataset, 'id_test': id_test_dataset, |
| 355 | + 'val': val_dataset, 'test': test_dataset, 'task': train_dataset.task, |
| 356 | + 'metric': train_dataset.metric}, meta_info |
0 commit comments