-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathrunner.py
266 lines (218 loc) · 17.1 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import torch
from torch_geometric.data import DataLoader
import numpy as np
from model import MatGen
from dataset import MatDataset
from utils import StandardScalerTorch
class Runner():
def __init__(self, conf, score_norm_path):
self.conf = conf
score_norm = np.loadtxt(score_norm_path)
self.model = MatGen(**conf['model'], score_norm=score_norm)
self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), **conf['optim'])
def _get_normalizer(self, dataset):
normalizer = StandardScalerTorch()
lengths = torch.tensor([data['graph_arrays'][2] for data in dataset.data_dict_list])
angles = torch.tensor([data['graph_arrays'][4] for data in dataset.data_dict_list])
length_angles = torch.cat((lengths, angles), dim=-1)
normalizer.fit(length_angles)
normalizer.means, normalizer.stds = normalizer.means.to('cuda'), normalizer.stds.to('cuda')
return normalizer
def _train_epoch(self, loader, epoch):
self.model.train()
total_elem_type_num_loss, total_elem_type_loss, total_elem_num_loss, total_lattice_loss, total_coord_loss = 0, 0, 0, 0, 0
total_kld_loss, total_kld_loss1, total_kld_loss2, total_kld_loss3 = 0.0, 0.0, 0.0, 0.0
total_loss = 0
for iter_num, data_batch in enumerate(loader):
data_batch = data_batch.to('cuda')
loss_dict = self.model(data_batch, temp=self.conf['train_temp'])
kld_loss, elem_type_num_loss, elem_type_loss, elem_num_loss, lattice_loss, coord_loss = loss_dict['kld_loss'], loss_dict['elem_type_num_loss'], \
loss_dict['elem_type_loss'], loss_dict['elem_num_loss'], loss_dict['lattice_loss'], loss_dict['coord_loss']
loss = self.conf['kld_weight'] * kld_loss + self.conf['elem_type_num_weight'] * elem_type_num_loss + \
self.conf['elem_type_weight'] * elem_type_loss + self.conf['elem_num_weight'] * elem_num_loss \
+ self.conf['lattice_weight'] * lattice_loss + self.conf['coord_weight'] * coord_loss
if epoch > 10 and (loss < 0.1 or loss > 100):
self.optimizer.zero_grad()
return None
if torch.isnan(loss) or torch.isinf(loss):
self.optimizer.zero_grad()
return None
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), self.conf['max_grad_value'])
self.optimizer.step()
total_loss += loss.to('cpu').item()
total_kld_loss += kld_loss.to('cpu').item()
total_elem_type_num_loss += elem_type_num_loss.to('cpu').item()
total_elem_type_loss += elem_type_loss.to('cpu').item()
total_elem_num_loss += elem_num_loss.to('cpu').item()
total_lattice_loss += lattice_loss.to('cpu').item()
total_coord_loss += coord_loss.to('cpu').item()
if 'kld_loss1' in loss_dict and 'kld_loss2' in loss_dict and 'kld_loss3' in loss_dict:
kld_loss1, kld_loss2, kld_loss3 = loss_dict['kld_loss1'].to('cpu').item(), loss_dict['kld_loss2'].to('cpu').item(), loss_dict['kld_loss3'].to('cpu').item()
total_kld_loss1 += kld_loss1
total_kld_loss2 += kld_loss2
total_kld_loss3 += kld_loss3
else:
kld_loss1, kld_loss2, kld_loss3 = 0.0, 0.0, 0.0
if iter_num % self.conf['verbose'] == 0:
print('Training iteration {} | loss kld {:.4f} kld1 {:.4f} kld2 {:.4f} kld3 {:.4f} elem_type_num {:.4f} elem_type {:.4f} elem_num {:.4f} lattice {:.4f} coord {:.4f}'.format(iter_num, kld_loss.to('cpu').item(),
kld_loss1, kld_loss2, kld_loss3, elem_type_num_loss.to('cpu').item(), elem_type_loss.to('cpu').item(), elem_num_loss.to('cpu').item(), lattice_loss.to('cpu').item(), coord_loss.to('cpu').item()))
iter_num += 1
return total_loss / iter_num, total_kld_loss / iter_num, total_kld_loss1 / iter_num, total_kld_loss2 / iter_num, total_kld_loss3 / iter_num, \
total_elem_type_num_loss / iter_num, total_elem_type_loss / iter_num, total_elem_num_loss / iter_num, total_lattice_loss / iter_num, total_coord_loss / iter_num
def train(self, data_path, val_data_path, out_path):
torch.nn.init.constant_(self.model.fc_var.weight, 1e-10)
torch.nn.init.constant_(self.model.fc_var.bias, 0.)
torch.nn.init.constant_(self.model.fc_lattice_log_var[-1].weight, 1e-10)
torch.nn.init.constant_(self.model.fc_lattice_log_var[-1].bias, 0.)
dataset = MatDataset(data_path, **self.conf['data'])
loader = DataLoader(dataset, batch_size=self.conf['batch_size'], shuffle=True)
normalizer = self._get_normalizer(dataset)
self.model.lattice_normalizer = normalizer
val_dataset = MatDataset(val_data_path, **self.conf['data'])
val_loader = DataLoader(val_dataset, batch_size=self.conf['batch_size'], shuffle=False)
end_epoch = self.conf['end_epoch']
for epoch in range(self.conf['start_epoch'], end_epoch+1):
if epoch == self.conf['start_epoch']:
last_optim_dict = self.optimizer.state_dict().copy()
last_model_dict = self.model.state_dict().copy()
last_last_optim_dict, last_last_model_dict = last_optim_dict, last_model_dict
else:
last_last_optim_dict, last_last_model_dict = last_optim_dict, last_model_dict
last_optim_dict = self.optimizer.state_dict().copy()
last_model_dict = self.model.state_dict().copy()
train_returns = self._train_epoch(loader, epoch)
retry_num = 0
while train_returns is None and retry_num <= 3:
retry_num += 1
self.optimizer.load_state_dict(last_optim_dict)
self.model.load_state_dict(last_model_dict)
train_returns = self._train_epoch(loader, epoch)
if train_returns is None:
retry_num = 0
while train_returns is None and retry_num <= 3:
retry_num += 1
self.optimizer.load_state_dict(last_last_optim_dict)
self.model.load_state_dict(last_last_model_dict)
train_returns = self._train_epoch(loader, epoch)
if train_returns is None:
exit()
avg_loss, avg_kld_loss, avg_kld_loss1, avg_kld_loss2, avg_kld_loss3, avg_elem_type_num_loss, avg_elem_type_loss, avg_elem_num_loss, avg_lattice_loss, avg_coord_loss = train_returns
_, _, _, _, _, _, _, _, _, _, elem_type_num_acc, elem_type_acc, elem_type_recall, elem_num_acc, elem_type_match, elem_num_match, comp_match = self.valid(loader)
avg_val_loss, avg_val_kld_loss, avg_val_kld_loss1, avg_val_kld_loss2, avg_val_kld_loss3, avg_val_elem_type_num_loss, avg_val_elem_type_loss, avg_val_elem_num_loss, avg_val_lattice_loss,\
avg_val_coord_loss, val_elem_type_num_acc, val_elem_type_acc, val_elem_type_recall, val_elem_num_acc, val_elem_type_match, val_elem_num_match, val_comp_match = self.valid(val_loader)
print('Training | Average loss {:.4f} kld {:.4f} kld1 {:.4f} kld2 {:.4f} kld3 {:.4f} elem_type_num {:.4f} elem_type {:.4f} elem_num {:.4f} lattice {:.4f} coord {:.4f} \
elem_type_num_acc {:.4f}, elem_type_acc {:.4f} elem_type_recall {:.4f} elem_num_acc {:.4f} elem_type_match {:.4f} elem_num_match {:.4f} comp_match {:.4f}'.format(avg_loss,
avg_kld_loss, avg_kld_loss1, avg_kld_loss2, avg_kld_loss3, avg_elem_type_num_loss, avg_elem_type_loss, avg_elem_num_loss, avg_lattice_loss, avg_coord_loss, \
elem_type_num_acc, elem_type_acc, elem_type_recall, elem_num_acc, elem_type_match, elem_num_match, comp_match))
print('Validation | Average loss {:.4f} kld {:.4f} kld1 {:.4f} kld2 {:.4f} kld3 {:.4f} elem_type_num {:.4f} elem_type {:.4f} elem_num {:.4f} lattice {:.4f} coord {:.4f} \
elem_type_num_acc {:.4f}, elem_type_acc {:.4f} elem_type_recall {:.4f} elem_num_acc {:.4f} elem_type_match {:.4f} elem_num_match {:.4f} comp_match {:.4f}'.format(avg_val_loss, avg_val_kld_loss, avg_val_kld_loss1, avg_val_kld_loss2, \
avg_val_kld_loss3, avg_val_elem_type_num_loss, avg_val_elem_type_loss, avg_val_elem_num_loss, avg_val_lattice_loss, avg_val_coord_loss, \
val_elem_type_num_acc, val_elem_type_acc, val_elem_type_recall, val_elem_num_acc, val_elem_type_match, val_elem_num_match, val_comp_match))
if out_path is not None:
if (epoch + 1) % self.conf['save_interval'] == 0:
torch.save(self.model.state_dict(), os.path.join(out_path, 'model_{}.pth'.format(epoch)))
file_obj = open(os.path.join(out_path, 'train.txt'), 'a')
file_obj.write('Training | Average loss {:.4f} kld {:.4f} kld1 {:.4f} kld2 {:.4f} kld3 {:.4f} elem_type_num {:.4f} elem_type {:.4f} elem_num {:.4f} lattice {:.4f} coord {:.4f} '
'elem_type_num_acc {:.4f}, elem_type_acc {:.4f} elem_type_recall {:.4f} elem_num_acc {:.4f} elem_type_match {:.4f} elem_num_match {:.4f} comp_match {:.4f}\n'.format(avg_loss,
avg_kld_loss, avg_kld_loss1, avg_kld_loss2, avg_kld_loss3, avg_elem_type_num_loss, avg_elem_type_loss, avg_elem_num_loss, avg_lattice_loss, avg_coord_loss, \
elem_type_num_acc, elem_type_acc, elem_type_recall, elem_num_acc, elem_type_match, elem_num_match, comp_match))
file_obj.close()
file_obj = open(os.path.join(out_path, 'val.txt'), 'a')
file_obj.write('Validation | Average loss {:.4f} kld {:.4f} kld1 {:.4f} kld2 {:.4f} kld3 {:.4f} elem_type_num {:.4f} elem_type {:.4f} elem_num {:.4f} lattice {:.4f} coord {:.4f} elem_type_num_acc {:.4f} '
'elem_type_acc {:.4f} elem_type_recall {:.4f} elem_num_acc {:.4f} elem_type_match {:.4f} elem_num_match {:.4f} comp_match {:.4f}\n'.format(avg_val_loss, avg_val_kld_loss, avg_val_kld_loss1, avg_val_kld_loss2, avg_val_kld_loss3, avg_val_elem_type_num_loss, \
avg_val_elem_type_loss, avg_val_elem_num_loss, avg_val_lattice_loss, avg_coord_loss, val_elem_type_num_acc, val_elem_type_acc, val_elem_type_recall, val_elem_num_acc, val_elem_type_match, val_elem_num_match, val_comp_match))
file_obj.close()
def valid(self, loader):
self.model.eval()
total_kld_loss, total_elem_type_num_loss, total_elem_type_loss, total_elem_num_loss, total_lattice_loss, total_coord_loss = 0, 0, 0, 0, 0, 0
total_kld_loss1, total_kld_loss2, total_kld_loss3 = 0.0, 0.0, 0.0
total_loss = 0
total_elem_type_num_num, total_elem_type_num_correct = 0, 0
total_elem_type_num, total_pos_elem_type_num, total_elem_num_num = 0, 0, 0
total_elem_type_correct, total_pos_elem_type_correct, total_elem_num_correct = 0, 0, 0
total_elem_type_match, total_elem_num_match, total_comp_match = 0, 0, 0
with torch.no_grad():
for iter_num, data_batch in enumerate(loader):
data_batch = data_batch.to('cuda')
loss_dict = self.model(data_batch, temp=self.conf['val_temp'], eval=True)
kld_loss, elem_type_num_loss, elem_type_loss, elem_num_loss, lattice_loss, coord_loss = loss_dict['kld_loss'], loss_dict['elem_type_num_loss'], \
loss_dict['elem_type_loss'], loss_dict['elem_num_loss'], loss_dict['lattice_loss'], loss_dict['coord_loss']
loss = self.conf['kld_weight'] * kld_loss + self.conf['elem_type_num_weight'] * elem_type_num_loss + self.conf['elem_type_weight'] * elem_type_loss \
+ self.conf['elem_num_weight'] * elem_num_loss + self.conf['lattice_weight'] * lattice_loss \
+ self.conf['coord_weight'] * coord_loss
total_loss += loss.to('cpu').item()
total_kld_loss += kld_loss.to('cpu').item()
total_elem_type_num_loss += elem_type_num_loss.to('cpu').item()
total_elem_type_loss += elem_type_loss.to('cpu').item()
total_elem_num_loss += elem_num_loss.to('cpu').item()
total_lattice_loss += lattice_loss.to('cpu').item()
total_coord_loss += coord_loss.to('cpu').item()
if 'kld_loss1' in loss_dict and 'kld_loss2' in loss_dict and 'kld_loss3' in loss_dict:
kld_loss1, kld_loss2, kld_loss3 = loss_dict['kld_loss1'].to('cpu').item(), loss_dict['kld_loss2'].to('cpu').item(), loss_dict['kld_loss3'].to('cpu').item()
total_kld_loss1 += kld_loss1
total_kld_loss2 += kld_loss2
total_kld_loss3 += kld_loss3
else:
kld_loss1, kld_loss2, kld_loss3 = 0.0, 0.0, 0.0
total_elem_type_num_num += loss_dict['total_elem_type_num_num']
total_elem_type_num_correct += loss_dict['elem_type_num_correct']
total_elem_type_num += loss_dict['total_elem_type_num']
total_pos_elem_type_num += loss_dict['pos_elem_type_num']
total_elem_num_num += loss_dict['elem_num_num']
total_elem_type_correct += loss_dict['elem_type_correct']
total_pos_elem_type_correct += loss_dict['pos_elem_type_correct']
total_elem_num_correct += loss_dict['elem_num_correct']
total_elem_type_match += loss_dict['composition_correct'][0]
total_elem_num_match += loss_dict['composition_correct'][1]
total_comp_match += loss_dict['composition_correct'][2]
iter_num += 1
return total_loss / iter_num, total_kld_loss / iter_num, total_kld_loss1 / iter_num, total_kld_loss2 / iter_num, total_kld_loss3 / iter_num, \
total_elem_type_num_loss / iter_num, total_elem_type_loss / iter_num, total_elem_num_loss / iter_num, total_lattice_loss / iter_num, total_coord_loss / iter_num, \
total_elem_type_num_correct / total_elem_type_num_num, total_elem_type_correct / total_elem_type_num, total_pos_elem_type_correct / total_pos_elem_type_num, \
total_elem_num_correct / total_elem_num_num, total_elem_type_match / total_elem_type_num_num, total_elem_num_match / total_elem_type_num_num, total_comp_match / total_elem_type_num_num
def generate(self, num_gen, data_path, coord_num_langevin_steps=100, coord_step_rate=1e-4):
dataset = MatDataset(data_path, **self.conf['data'])
normalizer = self._get_normalizer(dataset)
self.model.lattice_normalizer = normalizer
num_atoms_list, atom_types_list, lengths_list, angles_list, frac_coords_list = [], [], [], [], []
num_remain = num_gen
one_time_gen = self.conf['chunk_size']
temperature = self.conf['gen_temp']
coord_noise_start = self.conf['model']['noise_start']
coord_noise_end = self.conf['model']['noise_end']
coord_num_diff_steps = self.conf['model']['num_time_steps']
self.model.eval()
while num_remain > 0:
if num_remain > one_time_gen:
mat_arrays = self.model.generate(one_time_gen, temperature, coord_noise_start, coord_noise_end, coord_num_diff_steps, coord_num_langevin_steps, coord_step_rate)
else:
mat_arrays = self.model.generate(num_remain, temperature, coord_noise_start, coord_noise_end, coord_num_diff_steps, coord_num_langevin_steps, coord_step_rate)
num_atoms_list.append(mat_arrays[0].detach().cpu())
atom_types_list.append(mat_arrays[1].detach().cpu())
lengths_list.append(mat_arrays[2].detach().cpu())
angles_list.append(mat_arrays[3].detach().cpu())
frac_coords_list.append(mat_arrays[4].detach().cpu())
num_mat = len(mat_arrays[0])
num_remain -= num_mat
print('{} materials are generated!'.format(num_gen - num_remain))
all_num_atoms = torch.cat(num_atoms_list, dim=0)
all_atom_types = torch.cat(atom_types_list, dim=0)
all_lengths = torch.cat(lengths_list, dim=0)
all_angles = torch.cat(angles_list, dim=0)
all_frac_coords = torch.cat(frac_coords_list, dim=0)
atom_types_list, lengths_list, angles_list, frac_coords_list = [], [], [], []
start_idx = 0
for idx, num_atom in enumerate(all_num_atoms.tolist()):
atom_types = all_atom_types.narrow(0, start_idx, num_atom).numpy()
lengths = all_lengths[idx].numpy()
angles = all_angles[idx].numpy()
frac_coords = all_frac_coords.narrow(0, start_idx, num_atom).numpy()
atom_types_list.append(atom_types)
lengths_list.append(lengths)
angles_list.append(angles)
frac_coords_list.append(frac_coords)
start_idx += num_atom
return atom_types_list, lengths_list, angles_list, frac_coords_list