-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathecomformer.py
171 lines (144 loc) · 5.9 KB
/
ecomformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from torch import nn
from utils import RBFExpansion
from transformer import ComformerConv
from torch_scatter import scatter
import math
from e3nn import o3
from typing import Optional, Tuple, Union
import torch.nn.functional as F
from torch import Tensor
from torch_sparse import SparseTensor
import torch.nn as nn
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.typing import Adj, OptTensor, PairTensor
class TensorProductConvLayer(torch.nn.Module):
# from Torsional diffusion
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True):
super(TensorProductConvLayer, self).__init__()
self.in_irreps = in_irreps
self.out_irreps = out_irreps
self.sh_irreps = sh_irreps
self.residual = residual
self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False)
self.fc = nn.Sequential(
nn.Linear(n_edge_features, n_edge_features),
nn.Softplus(),
nn.Linear(n_edge_features, tp.weight_numel)
)
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean'):
edge_src, edge_dst = edge_index
tp = self.tp(node_attr[edge_dst], edge_sh, self.fc(edge_attr))
out_nodes = out_nodes or node_attr.shape[0]
out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce)
if self.residual:
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1]))
out = out + padded
return out
class MatformerConvEqui(nn.Module):
def __init__(
self,
in_channels: Union[int, Tuple[int, int]],
out_channels: int,
edge_dim: Optional[int] = None,
use_second_order_repr: bool = True,
ns: int = 64,
nv: int = 8,
residual: bool = True,
):
super().__init__()
irrep_seq = [
f'{ns}x0e',
f'{ns}x0e + {nv}x1o + {nv}x2e',
f'{ns}x0e'
]
self.ns, self.nv = ns, nv
self.node_linear = nn.Linear(in_channels, ns)
self.skip_linear = nn.Linear(in_channels, out_channels)
self.sh = '1x0e + 1x1o + 1x2e'
# self.sh = '1x0e + 1x1o' # ablation
self.nlayer_1 = TensorProductConvLayer(
in_irreps=irrep_seq[0],
sh_irreps=self.sh,
out_irreps=irrep_seq[1],
n_edge_features=edge_dim,
residual=residual
)
self.nlayer_2 = TensorProductConvLayer(
in_irreps=irrep_seq[1],
sh_irreps=self.sh,
out_irreps=irrep_seq[2],
n_edge_features=edge_dim,
residual=False
)
self.softplus = nn.Softplus()
self.bn = nn.BatchNorm1d(ns)
self.node_linear_2 = nn.Linear(ns, out_channels)
def forward(self, data, node_feature: Union[Tensor, PairTensor], edge_index: Adj, edge_feature: Union[Tensor, PairTensor],
edge_nei_len: OptTensor = None):
edge_vec = data.edge_attr
edge_irr = o3.spherical_harmonics(self.sh, edge_vec, normalize=True, normalization='component')
n_ = node_feature.shape[0]
skip_connect = node_feature
node_feature = self.node_linear(node_feature)
node_feature = self.nlayer_1(node_feature, edge_index, edge_feature, edge_irr)
node_feature = self.nlayer_2(node_feature, edge_index, edge_feature, edge_irr)
node_feature = self.softplus(self.node_linear_2(self.softplus(self.bn(node_feature))))
node_feature += self.skip_linear(skip_connect)
return node_feature
def bond_cosine(r1, r2):
bond_cosine = torch.sum(r1 * r2, dim=-1) / (
torch.norm(r1, dim=-1) * torch.norm(r2, dim=-1)
)
bond_cosine = torch.clamp(bond_cosine, -1, 1)
return bond_cosine
def equality_adjustment(equality, batch):
"""
Adjust the second batch of matrices based on the equality of entries in the first batch.
"""
b, l1, l2 = batch.size()
batch = batch.reshape(b, l1 * l2)
for i in range(b):
mask = equality[i]
for j in range(l1 * l2):
for k in range(j + 1, l1 * l2):
if mask[j, k]:
# Average the entries in the second batch
batch[i, j] = batch[i, k] = (batch[i, j] + batch[i, k]) / 2
return batch.reshape(b, l1, l2)
class EComformerEquivariant(nn.Module):
def __init__(self, args):
super().__init__()
embsize = 128
self.atom_embedding = nn.Linear(
92, embsize
)
self.rbf = nn.Sequential(
RBFExpansion(
vmin=-4.0,
vmax=0.0,
bins=512,
),
nn.Linear(512, embsize),
nn.Softplus(),
)
self.att_layers = nn.ModuleList(
[
ComformerConv(in_channels=embsize, out_channels=embsize, heads=1, edge_dim=embsize)
for _ in range(2)
]
)
self.equi_update = MatformerConvEqui(in_channels=embsize, out_channels=embsize, edge_dim=embsize)
self.output_ln = nn.Linear(embsize, 9)
def forward(self, data) -> torch.Tensor:
node_features = self.atom_embedding(data.x)
edge_feat = -0.75 / torch.norm(data.edge_attr, dim=1)
# edge_feat = torch.norm(data.edge_attr, dim=1)
edge_features = self.rbf(edge_feat)
node_features = self.att_layers[0](node_features, data.edge_index, edge_features)
node_features = self.att_layers[1](node_features, data.edge_index, edge_features)
node_features = self.equi_update(data, node_features, data.edge_index, edge_features)
node_features = self.output_ln(node_features)
crystal_features = scatter(node_features, data.batch, dim=0, reduce="mean")
outputs = crystal_features.view(-1, 3, 3) # ablation for no equivariance.
return outputs