-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathdata.py
265 lines (233 loc) · 9.92 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import pickle as pk
import spglib
import numpy as np
from tqdm import tqdm
from pymatgen.core.lattice import Lattice
from pymatgen.core.structure import Structure
from e3nn import o3
from e3nn.io import CartesianTensor
import torch
import json
from pymatgen.io.vasp import Poscar
import pdb
from pymatgen.io.jarvis import JarvisAtomsAdaptor
from jarvis.core.atoms import Atoms
jarvis_adpt = JarvisAtomsAdaptor()
irreps_output = o3.Irreps('1x0e + 1x0o + 1x1e + 1x1o + 1x2e + 1x2o + 1x3e + 1x3o')
converter = CartesianTensor("ij")
E_matrix = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
def euclidean_distance(vec1, vec2):
"""Calculate Euclidean distance between two 3D vectors."""
return sum((a - b) ** 2 for a, b in zip(vec1, vec2)) ** 0.5
def are_vectors_equal(vec1, vec2, tolerance=1e-5):
for v1, v2 in zip(vec1, vec2):
diff = abs(v1 - v2)
if not (diff < tolerance or abs(diff - 1) < tolerance):
return False
return True
def are_almost_equal(list1, list2, tolerance=1e-5):
"""Check if two lists of 3D vectors are equal within a given tolerance."""
if len(list1) != len(list2):
return False
matched = []
for v1 in list1:
found_match = False
for j, v2 in enumerate(list2):
if j in matched:
continue
if euclidean_distance(v1, v2) <= tolerance:
matched.append(j)
found_match = True
break
if are_vectors_equal(v1, v2):
matched.append(j)
found_match = True
break
if not found_match:
return False
return True
def rm_duplicates(vectors):
vecs = vectors.reshape(-1, 9)
seen = set()
duplicates = set()
for i in range(vecs.shape[0]):
vector = vecs[i]
vt = tuple(vector) # Convert to tuple for hashability
if vt in seen:
duplicates.add(vt)
else:
seen.add(vt)
seen = list(seen)
vector_list = np.array([list(vector) for vector in seen]).reshape(-1, 3, 3)
return vector_list
def is_group(rots):
length = rots.shape[0]
tmp_list = [rots[idx] for idx in range(length)]
for ix in range(length):
for iy in range(length):
tmp_mul = np.matmul(rots[ix], rots[iy])
is_present = any(np.sum(abs(tmp_mul - v)) < 1e-5 for v in tmp_list)
if not is_present:
print(tmp_mul, "not in the list", tmp_list)
return False
tmp_inv = rots[ix].T
is_present = any(np.sum(abs(tmp_inv - v)) < 1e-5 for v in tmp_list)
if not is_present:
print(tmp_inv, "not in the list", tmp_list)
return False
return True
def get_symmetry_dataset(structure, symprec=1e-5):
"""
Get space group for a pymatgen Structure object.
Parameters:
- structure: pymatgen Structure object
- symprec: float, the symmetry precision for determining the space group
Returns:
- symmetry: dict
"""
# Convert pymatgen structure to tuple format suitable for spglib
lattice = structure.lattice.matrix
positions = structure.frac_coords
atomic_numbers = structure.atomic_numbers
cell = (lattice, positions, atomic_numbers)
# Determine space group
symmetry = spglib.get_symmetry_dataset(cell, symprec=symprec)
return symmetry
def find_almost_equal_entries(matrix):
"""
Find entries in each matrix that are almost equal to each other with less than absolute 0.01% difference.
"""
h, w = matrix.shape
matrix = matrix.view(-1)
mask = torch.abs(matrix.unsqueeze(0) - matrix.unsqueeze(1)) < (0.0001 * torch.abs(matrix.unsqueeze(0) + matrix.unsqueeze(1)) / 2)
return mask
def get_dataset(
dataset_name="dielectric",
symprec=1e-5, # Euclidean distance tolerance to determine the space group operations
use_corrected_structure=False,
load_preprocessed=False,
):
if load_preprocessed:
with open("yourpath/preprocessed_%s_dataset_elec.pkl"%dataset_name, 'rb') as f:
dataset = pk.load(f)
dat = []
f_norm=[]
for i in tqdm(range(len(dataset))):
dataset[i]['reduce_rotations'] = None
dataset[i]['wigner_D_per_atom'] = None
dataset[i]['wigner_D_num'] = None
dataset[i]['p_input'] = {}
dataset[i]['p_input']['structure'] = dataset[i]['structure']
dataset[i]['p_input']['equivalent_atoms'] = dataset[i]['equivalent_atoms']
dataset[i]['matrix_equal'] = find_almost_equal_entries(dataset[i]['ideal_matrix'])
f_norm.append((torch.tensor(dataset[i]['dielectric']) ** 2).sum() ** 0.5)
print("dataset fnorm mean", torch.tensor(f_norm).mean(), "std", torch.tensor(f_norm).std())
cubic_cnt = 0
hexa_cnt = 0
tetr_cnt = 0
orth_cnt = 0
mono_cnt = 0
tric_cnt = 0
for i in tqdm(range(len(dataset))):
space_g = dataset[i]['sym_dataset']['number']
if space_g >= 195:
cubic_cnt += 1
elif space_g >= 143:
hexa_cnt += 1
elif space_g >= 75:
tetr_cnt += 1
elif space_g >= 16:
orth_cnt += 1
elif space_g >= 3:
mono_cnt += 1
else:
tric_cnt += 1
print("cubic_cnt ", cubic_cnt, "hexa_cnt ", hexa_cnt, "tetr_cnt ", tetr_cnt, "orth_cnt ", orth_cnt, "mono_cnt ", mono_cnt, "tric_cnt ", tric_cnt)
# dataset = dat
return dataset
# load higher tensor order property dataset
with open("yourpath/jarvis_diele_piezo.pkl", 'rb') as f:
dataset = pk.load(f)
# Screen process
print("Screening and filtering process: filter out too large entries")
dat = []
data_cnt = 0
for i in tqdm(range(len(dataset))):
if dataset[i]['dielectric']:
dielectric = torch.tensor(dataset[i]['dielectric'])
if abs(dielectric).max() < 100:
data_cnt += 1
dat.append(dataset[i])
print(data_cnt)
dataset = dat
# store space group operations for every crystal in the dataset
print("Beginning preprocess: Step 1 - determine space group operations...")
rotation_list = []
trans_list = []
ideal_matrixs = []
dat = []
cnt = 0
error = 0
for i in tqdm(range(len(dataset))):
structure = jarvis_adpt.get_structure(Atoms.from_dict(dataset[i]['atoms']))
dataset[i]['structure'] = structure
sym_dataset = get_symmetry_dataset(structure, symprec)
# transform the structure accordingly to make space group operations valid, this will erase the distortions in the structure
dataset[i]['equivalent_atoms'] = sym_dataset['equivalent_atoms']
dataset[i]['sym_dataset'] = sym_dataset
dataset[i]['corrected_structure'] = Structure(lattice=sym_dataset['std_lattice'], species=sym_dataset['std_types'], coords=sym_dataset['std_positions'])
dataset[i]['corrected_rotation'] = sym_dataset['std_rotation_matrix']
if use_corrected_structure:
# remove the rotation transformation
Rot = np.array(sym_dataset['std_rotation_matrix'])
target_tmp = np.array(dataset[i][dataset_name])
dataset[i][dataset_name] = np.dot(Rot, np.dot(target_tmp, Rot.T))
sym_dataset = get_symmetry_dataset(dataset[i]['corrected_structure'], symprec)
dataset[i]['equivalent_atoms'] = sym_dataset['equivalent_atoms']
dataset[i]['sym_dataset'] = sym_dataset
dataset[i]['structure'] = dataset[i]['corrected_structure']
# check the transformed structure - labels satisfy symmetry or not
mask = (torch.arange(32)+10.)
mask[8:] *= 100
rots = np.array(sym_dataset['rotations'])
rots = rm_duplicates(rots)
Lat = dataset[i]['structure'].lattice.matrix.T
L_inv = np.linalg.inv(Lat)
D_x = torch.zeros(32, 32)
tmp_rot = np.matmul(Lat, np.matmul(rots, L_inv))
assert is_group(tmp_rot), ("Found non_group rots", tmp_rot)
D_tmp = irreps_output.D_from_matrix(torch.Tensor(tmp_rot))
assert (((abs(D_tmp[:,5:8,5:8] - tmp_rot)).sum(dim=-1).sum(dim=-1) > 1e-2).sum() < 1e-5), (abs(D_tmp[:,5:8,5:8] - tmp_rot).sum(dim=-1).sum(dim=-1))
D_x = D_tmp.sum(dim=0)
feature_mask = torch.matmul(D_x, mask)
mask_total = feature_mask[[0, 2, 3, 4, 8, 9, 10, 11, 12]]
ideal_matrix = converter.to_cartesian(mask_total)
# print(sym_dataset['number'], ideal_matrix)
ideal_matrixs.append(ideal_matrix)
dataset[i]['ideal_matrix'] = ideal_matrix
D_x = D_x / D_tmp.shape[0]
zero_mask = (D_x > 1e-5).float()
D_x *= zero_mask
dataset[i]['feature_mask'] = D_x
dataset[i]['feature_mask_ori'] = feature_mask
dataset[i]['rot_list'] = tmp_rot
error_cnt = 0
for i in tqdm(range(len(dataset))):
# item 1: zero investigation
ideal_mask = (abs(ideal_matrixs[i]) < 1.).float()
dielectric = torch.tensor(dataset[i]['dielectric'])
if (abs(dielectric * ideal_mask)).sum() > 1e-4:
error_cnt += 1
print(dielectric, ideal_mask)
print("zero investigation", error_cnt)
for i in tqdm(range(len(dataset))):
dataset[i]['reduce_rotations'] = None
dataset[i]['wigner_D_per_atom'] = None
dataset[i]['wigner_D_num'] = None
dataset[i]['p_input'] = {}
dataset[i]['p_input']['structure'] = dataset[i]['structure']
dataset[i]['p_input']['equivalent_atoms'] = dataset[i]['equivalent_atoms']
dataset[i]['matrix_equal'] = find_almost_equal_entries(dataset[i]['ideal_matrix'])
with open("yourpath/preprocessed_%s_dataset_elec.pkl"%dataset_name, 'wb') as f:
pk.dump(dataset, f)
return dataset