forked from alibaba/AliceMind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrounding_mplug.py
401 lines (336 loc) · 16.1 KB
/
grounding_mplug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import utils as public_utils
from torch.utils.data import DataLoader
from dataset.grounding_dataset import NestedTensor, collate_fn, collate_fn_val
from models.model_grounding_mplug import MPLUG
from models.vit import interpolate_pos_embed, resize_pos_embed
from models.tokenization_bert import BertTokenizer
from vgTools.utils import misc as utils
from dataset.utils import save_result
from dataset import create_dataset, create_sampler, create_loader
from scheduler import create_scheduler
from optim import create_optimizer, create_two_optimizer
from vgTools.utils import eval_utils
from icecream import ic
from pdb import set_trace as breakpoint
def load_checkpoint(model,checkpoint_path,args,config):
if isinstance(model,torch.nn.parallel.DistributedDataParallel):
model=model.module
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
tmp = {}
for key in state_dict.keys():
if '_m.' in key:
continue
if 'text_encoder.bert' in key[:len('text_encoder.bert')]:
encoder_key = key.replace('bert.', '')
tmp[encoder_key] = state_dict[key]
elif 'fusion_encoder.fusion' in key:
encoder_key = key.replace('fusion.', '')
tmp[encoder_key]=state_dict[key]
else:
tmp[key]=state_dict[key]
state_dict = tmp
# reshape positional embedding to accomodate for image resolution change
vit_rate = 16*16 if '16' in config['clip_name'] else 14*14
num_patches = int(config["image_res"] * config["image_res"]/vit_rate)
pos_embed = nn.Parameter(torch.zeros(num_patches + 1, config['vision_width']).float())
pos_embed = resize_pos_embed(state_dict['visual_encoder.visual.positional_embedding'].unsqueeze(0),
pos_embed.unsqueeze(0))
state_dict['visual_encoder.visual.positional_embedding'] = pos_embed
if not args.evaluate:
if config['distill']:
num_patches = int(config["image_res"] * config["image_res"] / vit_rate)
pos_embed = nn.Parameter(torch.zeros(num_patches + 1, config['vision_width']).float())
msg = model.load_state_dict(state_dict, strict=False)
print('load checkpoint from %s' % checkpoint_path)
print(msg)
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, do_two_optim=False,do_amp=False):
accum_steps=config.get('accum_steps',1)
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
if do_two_optim:
metric_logger.add_meter('lr1', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('lr2', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
else:
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_seq', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps*step_size
for i,batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
img_data, text_data, target = batch
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
if epoch>0 or not config['warm_up']:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(data_loader))
loss_dict = model(img_data, text_data,{'targets':target})
loss = sum(loss_dict[k] for k in loss_dict.keys())
optimizer.zero_grad()
if do_amp:
from apex import amp
with amp.scale_loss(loss, optimizer) as scaled_loss:
# logger.info('scaled loss: {}'.format(str(scaled_loss)))
scaled_loss.backward()
else:
loss.backward()
if (i + 1) % accum_steps == 0:
optimizer.step()
optimizer.zero_grad()
metric_logger.update(loss_seq=loss_dict['loss_seq'].item())
if do_two_optim:
metric_logger.update(lr1=optimizer.param_groups[0]["lr"])
metric_logger.update(lr2=optimizer.param_groups[2]["lr"])
else:
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch==0 and i%step_size==0 and i<=warmup_iterations:
scheduler.step(i//step_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def val(model, data_loader, tokenizer, device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Eval:'
for batch in metric_logger.log_every(data_loader, 10, header):
img_data, text_data, target,raw_data = batch
batch_size = img_data.tensors.size(0)
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
pred_res = model(img_data, text_data,{})
pred_boxes=pred_res
miou, accu = eval_utils.trans_vg_eval_val(pred_boxes, target)
metric_logger.update_v2('miou', torch.mean(miou), batch_size)
metric_logger.update_v2('accu', accu, batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return stats
@torch.no_grad()
def evaluate(model, data_loader, tokenizer, device):
model.eval()
pred_box_list = []
gt_box_list = []
from tqdm import tqdm
for _, batch in enumerate(tqdm(data_loader)):
img_data, text_data, target,raw_data = batch
# copy to GPU
img_data = img_data.to(device)
text_data = text_data.to(device)
target = target.to(device)
pred_res = model.module(img_data, text_data,{})
pred_boxes=pred_res
pred_box_list.append(pred_boxes.cpu())
gt_box_list.append(target.cpu())
pred_boxes = torch.cat(pred_box_list, dim=0)
gt_boxes = torch.cat(gt_box_list, dim=0)
total_num = gt_boxes.shape[0]
accu_num = eval_utils.trans_vg_eval_test(pred_boxes, gt_boxes)
result_tensor = torch.tensor([accu_num, total_num]).to(device)
torch.cuda.synchronize()
dist.all_reduce(result_tensor)
accuracy = float(result_tensor[0]) / float(result_tensor[1])
return accuracy
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
#### Dataset ####
print("Creating dataset")
train_dataset, val_dataset, test_datasets = create_dataset(config['dataset'], config)
datasets = [train_dataset, val_dataset]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True, False], num_tasks, global_rank)
else:
samplers = [None, None]
train_loader, test_loader = create_loader(datasets,samplers,batch_size=[config['batch_size_train'],config['batch_size_train']],
num_workers=[48,48],is_trains=[True, False], collate_fns=[collate_fn,collate_fn_val])
tokenizer = BertTokenizer.from_pretrained(args.text_encoder)
#### Model ####
print("Creating model")
model = MPLUG(config = config, text_encoder=args.text_encoder, text_decoder=args.text_decoder, tokenizer=tokenizer)
model = model.to(device)
for name, module in model.named_modules():
if hasattr(module,'use_checkpoint') and module.use_checkpoint==True:
module.use_checkpoint=False
print(f"Set {name} checkpointing: False")
if hasattr(module,'config') and getattr(module.config, "gradient_checkpointing", False):
module.config.gradient_checkpointing=False
print(f"Set {name} checkpointing: False")
if args.do_two_optim:
arg_opt = public_utils.AttrDict(config['optimizer'])
optimizer = create_two_optimizer(arg_opt, model)
else:
arg_opt = public_utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = public_utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.do_amp:
from apex import amp
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if args.checkpoint:
load_checkpoint(model,args.checkpoint,args,config)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
if int(torch.__version__.split('.')[1])>=10:
model._set_static_graph()
model_without_ddp = model.module
if not args.evaluate:
print("Start training")
start_time = time.time()
best_accu = 0
for epoch in range(start_epoch, max_epoch):
if epoch > 0:
lr_scheduler.step(epoch + warmup_steps)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
train_stats = train(model, train_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler,
config, do_amp=args.do_amp, do_two_optim=args.do_two_optim)
results = val(model, test_loader, tokenizer, device)
if utils.is_main_process():
if args.evaluate:
log_stats = {**{f'{k}': v for k, v in results.items()},
'epoch': epoch,
}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'{k}': v for k, v in results.items()},
'epoch': epoch,
}
if results['accu']>best_accu:
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best_accu = results['accu']
if (epoch + 1) % 10 == 0:
checkpoint_path=(Path(args.output_dir , f'checkpoint{epoch:04}.pth'))
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
'val_accu': results['accu']
}, checkpoint_path)
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
if args.evaluate:
break
lr_scheduler.step(epoch+warmup_steps+1)
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
# Eval
from torch.utils.data import DataLoader, DistributedSampler
checkpoint_path=''
if Path(args.eval_checkpoint).exists():
checkpoint_path=args.eval_checkpoint
load_checkpoint(model,args.eval_checkpoint,args,config)
else:
print(f'checkpoint {args.eval_checkpoint} not found.')
if Path(args.output_dir,'checkpoint_best.pth').exists():
checkpoint_path=Path(args.output_dir,'checkpoint_best.pth')
print(f'load default best checkpoint')
load_checkpoint(model,Path(args.output_dir,'checkpoint_best.pth'),args,config)
else:
print('no checkpoint available.')
import sys
sys.exit(0)
for split_name,split_dataset in test_datasets.items():
if args.distributed:
sampler_test = DistributedSampler(split_dataset)
else:
sampler_test = torch.utils.data.SequentialSampler(split_dataset)
data_loader_test = DataLoader(split_dataset, 1, sampler=sampler_test,
drop_last=False, collate_fn=collate_fn_val, num_workers=12)
start_time = time.time()
accuracy = evaluate(model,data_loader_test,tokenizer,device)
if utils.is_main_process():
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
log_stats = {'test_model:': str(checkpoint_path),
'%s_set_accuracy'%split_name: accuracy,
}
print(log_stats)
if args.output_dir and utils.is_main_process():
with (Path(args.output_dir) / "eval_log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Grounding.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--eval_checkpoint', default='')
parser.add_argument('--output_dir', default='output/RefCOCO')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--text_decoder', default='bert-base-uncased')
parser.add_argument('--dataset', default='vg_uni')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--min_length', default=1, type=int)
parser.add_argument('--max_length', default=10, type=int)
parser.add_argument('--beam_size', default=5, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--do_two_optim', action='store_true')
parser.add_argument('--do_amp', action='store_true')
parser.add_argument('--no_init_decocde', action='store_true')
parser.add_argument('--do_accum', action='store_true')
parser.add_argument('--accum_steps', default=4, type=int)
parser.add_argument('--finetune', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
config.update(vars(args))
if args.finetune:
config['optimizer']['lr1']=2e-6
config['optimizer']['lr2']=2e-6
if 'clip_name' not in config:
config['clip_name'] = 'ViT-B-16.tar'
args.result_dir = os.path.join(args.output_dir, 'result')
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
Path(args.result_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)