forked from alibaba/AliceMind
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_abstractive.py
389 lines (329 loc) · 15.4 KB
/
train_abstractive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#!/usr/bin/env python
"""
Main training workflow
"""
from __future__ import division
import argparse
import collections
import glob
import os
import random
import signal
import time
import torch
from transformers import BertTokenizer
from transformers import RobertaTokenizer
import distributed
from models import data_loader, model_builder
from models.data_loader import load_dataset
from models.loss import abs_loss
from models.model_builder import AbsSummarizer
from models.predictor import build_predictor
from models.trainer import build_trainer
from others.logging import logger, init_logger
model_flags = ['hidden_size', 'ff_size', 'heads', 'emb_size', 'enc_layers', 'enc_hidden_size', 'enc_ff_size',
'dec_layers', 'dec_hidden_size', 'dec_ff_size', 'encoder', 'ff_actv', 'use_interval']
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def train_abs_multi(args):
""" Spawns 1 process per GPU """
init_logger()
nb_gpu = args.world_size
mp = torch.multiprocessing.get_context('spawn')
# Create a thread to listen for errors in the child processes.
error_queue = mp.SimpleQueue()
error_handler = ErrorHandler(error_queue)
# Train with multiprocessing.
procs = []
for i in range(nb_gpu):
device_id = i
procs.append(mp.Process(target=run, args=(args,
device_id, error_queue,), daemon=True))
procs[i].start()
logger.info(" Starting process pid: %d " % procs[i].pid)
error_handler.add_child(procs[i].pid)
for p in procs:
p.join()
def run(args, device_id, error_queue):
""" run process """
setattr(args, 'gpu_ranks', [int(i) for i in args.gpu_ranks])
try:
gpu_rank = distributed.multi_init(device_id, args.world_size, args.gpu_ranks)
print('gpu_rank %d' % gpu_rank)
if gpu_rank != args.gpu_ranks[device_id]:
raise AssertionError("An error occurred in \
Distributed initialization")
train_abs_single(args, device_id)
except KeyboardInterrupt:
pass # killed by parent, do nothing
except Exception:
# propagate exception to parent process, keeping original traceback
import traceback
error_queue.put((args.gpu_ranks[device_id], traceback.format_exc()))
class ErrorHandler(object):
"""A class that listens for exceptions in children processes and propagates
the tracebacks to the parent process."""
def __init__(self, error_queue):
""" init error handler """
import signal
import threading
self.error_queue = error_queue
self.children_pids = []
self.error_thread = threading.Thread(
target=self.error_listener, daemon=True)
self.error_thread.start()
signal.signal(signal.SIGUSR1, self.signal_handler)
def add_child(self, pid):
""" error handler """
self.children_pids.append(pid)
def error_listener(self):
""" error listener """
(rank, original_trace) = self.error_queue.get()
self.error_queue.put((rank, original_trace))
os.kill(os.getpid(), signal.SIGUSR1)
def signal_handler(self, signalnum, stackframe):
""" signal handler """
for pid in self.children_pids:
os.kill(pid, signal.SIGINT) # kill children processes
(rank, original_trace) = self.error_queue.get()
msg = """\n\n-- Tracebacks above this line can probably
be ignored --\n\n"""
msg += original_trace
raise Exception(msg)
def validate_abs(args, device_id):
timestep = 0
if (args.test_all):
cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt')))
cp_files.sort(key = lambda x: int(x.split("_")[-1][:-3]))
print (cp_files)
#cp_files.sort(key=os.path.getmtime)
xent_lst = []
#for i, cp in enumerate(cp_files):
for i, cp in enumerate(cp_files[::-1]):
step = int(cp.split('.')[-2].split('_')[-1])
test_abs(args, device_id, cp, step)
'''
if args.dataset == "marco":
test_abs(args, device_id, cp, step)
continue
if (args.test_start_from != -1 and step < args.test_start_from):
xent_lst.append((1e6, cp))
continue
xent = validate(args, device_id, cp, step)
xent_lst.append((xent, cp))
max_step = xent_lst.index(min(xent_lst))
if (i - max_step > 10):
break
xent_lst = sorted(xent_lst, key=lambda x: x[0])[:5]
logger.info('PPL %s' % str(xent_lst))
for xent, cp in xent_lst:
step = int(cp.split('.')[-2].split('_')[-1])
test_abs(args, device_id, cp, step)
#'''
else:
while (True):
cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt')))
cp_files.sort(key=os.path.getmtime)
if (cp_files):
cp = cp_files[-1]
time_of_cp = os.path.getmtime(cp)
if (not os.path.getsize(cp) > 0):
time.sleep(60)
continue
if (time_of_cp > timestep):
timestep = time_of_cp
step = int(cp.split('.')[-2].split('_')[-1])
#validate(args, device_id, cp, step)
test_abs(args, device_id, cp, step)
cp_files = sorted(glob.glob(os.path.join(args.model_path, 'model_step_*.pt')))
cp_files.sort(key=os.path.getmtime)
if (cp_files):
cp = cp_files[-1]
time_of_cp = os.path.getmtime(cp)
if (time_of_cp > timestep):
continue
else:
time.sleep(300)
def validate(args, device_id, pt, step):
device = "cpu" if args.visible_gpus == '-1' else "cuda"
if (pt != ''):
test_from = pt
else:
test_from = args.test_from
logger.info('Loading checkpoint from %s' % test_from)
checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
opt = vars(checkpoint['opt'])
for k in opt.keys():
if (k in model_flags):
setattr(args, k, opt[k])
print(args)
if args.encoder == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.model_pth, do_lower_case=False)
symbols = {'BOS': tokenizer.cls_token_id, 'EOS': tokenizer.sep_token_id,
'PAD': tokenizer.pad_token_id, 'EOQ': tokenizer.unk_token_id}
elif args.encoder == 'bert':
tokenizer = BertTokenizer.from_pretrained('./bert-base-uncased/', do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[CLS]'], 'EOS': tokenizer.vocab['[SEP]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
elif args.encoder == 'zh_bert':
tokenizer = BertTokenizer.from_pretrained(args.model_pth, do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[unused1]'], 'EOS': tokenizer.vocab['[unused2]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused3]']}
model = AbsSummarizer(args, device, checkpoint, None, None)
model.eval()
valid_iter = data_loader.Dataloader(args, load_dataset(args, 'valid', shuffle=False),
args.batch_size, device,
shuffle=False, is_test=False)
valid_loss = abs_loss(model.generator, symbols, model.vocab_size, train=False, device=device)
trainer = build_trainer(args, device_id, model, None, valid_loss)
stats = trainer.validate(valid_iter, step)
return stats.xent()
def test_abs(args, device_id, pt, step):
device = "cpu" if args.visible_gpus == '-1' else "cuda"
if (pt != ''):
test_from = pt
else:
test_from = args.test_from
logger.info('Loading checkpoint from %s' % test_from)
checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
opt = vars(checkpoint['opt'])
encoder = args.encoder
for k in opt.keys():
if (k in model_flags):
setattr(args, k, opt[k])
#print(args)
args.encoder = encoder
if args.encoder == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.model_pth, do_lower_case=False)
symbols = {'BOS': tokenizer.cls_token_id, 'EOS': tokenizer.sep_token_id,
'PAD': tokenizer.pad_token_id, 'EOQ': tokenizer.unk_token_id}
elif args.encoder == 'bert':
tokenizer = BertTokenizer.from_pretrained('./bert-base-uncased/', do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[CLS]'], 'EOS': tokenizer.vocab['[SEP]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
elif args.encoder == 'zh_bert':
tokenizer = BertTokenizer.from_pretrained(args.model_pth, do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[unused1]'], 'EOS': tokenizer.vocab['[unused2]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused3]']}
model = AbsSummarizer(args, device, checkpoint, None, None)
model.eval()
test_iter = data_loader.Dataloader(args, load_dataset(args, args.mode, shuffle=False),
args.test_batch_size, device,
shuffle=False, is_test=True)
predictor = build_predictor(args, tokenizer, symbols, model, logger)
predictor.translate(test_iter, step)
def test_text_abs(args, device_id, pt, step):
device = "cpu" if args.visible_gpus == '-1' else "cuda"
if (pt != ''):
test_from = pt
else:
test_from = args.test_from
logger.info('Loading checkpoint from %s' % test_from)
checkpoint = torch.load(test_from, map_location=lambda storage, loc: storage)
opt = vars(checkpoint['opt'])
for k in opt.keys():
if (k in model_flags):
setattr(args, k, opt[k])
print(args)
if args.encoder == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.model_pth, do_lower_case=False)
symbols = {'BOS': tokenizer.cls_token_id, 'EOS': tokenizer.sep_token_id,
'PAD': tokenizer.pad_token_id, 'EOQ': tokenizer.unk_token_id}
elif args.encoder == 'bert':
tokenizer = BertTokenizer.from_pretrained('./bert-base-uncased/', do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[CLS]'], 'EOS': tokenizer.vocab['[SEP]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
elif args.encoder == 'zh_bert':
tokenizer = BertTokenizer.from_pretrained(args.model_pth, do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[unused1]'], 'EOS': tokenizer.vocab['[unused2]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused3]']}
model = AbsSummarizer(args, device, checkpoint, None, None)
model.eval()
test_iter = data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False),
args.test_batch_size, device,
shuffle=False, is_test=True)
predictor = build_predictor(args, tokenizer, symbols, model, logger)
predictor.translate(test_iter, step)
def baseline(args, cal_lead=False, cal_oracle=False):
test_iter = data_loader.Dataloader(args, load_dataset(args, 'test', shuffle=False),
args.batch_size, 'cpu',
shuffle=False, is_test=True)
trainer = build_trainer(args, '-1', None, None, None)
#
if (cal_lead):
trainer.test(test_iter, 0, cal_lead=True)
elif (cal_oracle):
trainer.test(test_iter, 0, cal_oracle=True)
def train_abs(args, device_id):
if (args.world_size > 1):
train_abs_multi(args)
else:
train_abs_single(args, device_id)
def train_abs_single(args, device_id):
init_logger(args.log_file)
logger.info(str(args))
device = "cpu" if args.visible_gpus == '-1' else "cuda"
logger.info('Device ID %d' % device_id)
logger.info('Device %s' % device)
torch.manual_seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
if device_id >= 0:
torch.cuda.set_device(device_id)
torch.cuda.manual_seed(args.seed)
if args.train_from != '':
logger.info('Loading checkpoint from %s' % args.train_from)
checkpoint = torch.load(args.train_from,
map_location=lambda storage, loc: storage)
opt = vars(checkpoint['opt'])
encoder = args.encoder
for k in opt.keys():
if (k in model_flags):
setattr(args, k, opt[k])
args.encoder = encoder
else:
checkpoint = None
if (args.load_from_extractive != ''):
logger.info('Loading bert from extractive model %s' % args.load_from_extractive)
bert_from_extractive = torch.load(args.load_from_extractive, map_location=lambda storage, loc: storage)
#bert_from_extractive = bert_from_extractive['model']
else:
bert_from_extractive = None
torch.manual_seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
def train_iter_fct():
return data_loader.Dataloader(args, load_dataset(args, 'train', shuffle=True), args.batch_size, device,
shuffle=True, is_test=False)
if args.encoder == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.model_pth, do_lower_case=False)
symbols = {'BOS': tokenizer.cls_token_id, 'EOS': tokenizer.sep_token_id,
'PAD': tokenizer.pad_token_id, 'EOQ': tokenizer.unk_token_id}
elif args.encoder == 'bert':
tokenizer = BertTokenizer.from_pretrained('./bert-base-uncased/', do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[CLS]'], 'EOS': tokenizer.vocab['[SEP]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused2]']}
elif args.encoder == 'zh_bert':
tokenizer = BertTokenizer.from_pretrained(args.model_pth, do_lower_case=True, cache_dir=args.temp_dir)
symbols = {'BOS': tokenizer.vocab['[unused1]'], 'EOS': tokenizer.vocab['[unused2]'],
'PAD': tokenizer.vocab['[PAD]'], 'EOQ': tokenizer.vocab['[unused3]']}
model = AbsSummarizer(args, device, checkpoint, bert_from_extractive, None)
if (args.sep_optim):
optim_bert = model_builder.build_optim_bert(args, model, checkpoint)
optim_dec = model_builder.build_optim_dec(args, model, checkpoint)
optim = [optim_bert, optim_dec]
else:
optim = [model_builder.build_optim(args, model, checkpoint)]
logger.info(model)
train_loss = abs_loss(model.generator, symbols, model.vocab_size, device, train=True,
label_smoothing=args.label_smoothing)
trainer = build_trainer(args, device_id, model, optim, train_loss)
if args.pretrain:
trainer.pretrain(args.pretrain_data_pth, args.train_steps)
else:
trainer.train(train_iter_fct, args.train_steps)