-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ngp.py
55 lines (47 loc) · 1.87 KB
/
train_ngp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from src.model import NGPTrainer
from src.common import NerfSynthetic
import toml
import optax
from tqdm import tqdm
import jax
from jax import numpy as jnp
import os
import shutil
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = "false"
# dataset_dir = "../baseline/data/nerf_synthetic"
dataset_dir = "../nerf_synthetic"
def train_ngp(log2_hashmap_size, dataset_name):
config = toml.load("configs/ngp/base.toml")
config["Hash"]["log2_hashmap_size"] = log2_hashmap_size
dataset = NerfSynthetic(f"{dataset_dir}/{dataset_name}")
snapshot = NGPTrainer.load_msgpack(f"baseline/{dataset_name}.msgpack")
trainer = NGPTrainer(
{
"config": config,
"density_grid": snapshot["density_grid"]
}, dataset)
optimizer = optax.adam(learning_rate=1e-2, b1=0.9, b2=0.99, eps=1e-15)
opt_state = optimizer.init(trainer.params)
@jax.jit
def update_with(grads, opt_state, params):
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return opt_state, params
with tqdm(total=10000) as pbar:
for j in range(0, 10000):
loss, grads = trainer.train_step(1 << 18)
opt_state, trainer.params = update_with(grads, opt_state,
trainer.params)
pbar.update(1)
pbar.set_description(f'Loss: {-10 * jnp.log10(loss)} dB')
shutil.copy(f"baseline/{dataset_name}.msgpack",
f"a/{dataset_name}_{log2_hashmap_size}.msgpack")
trainer.save_snapshot(f"a/{dataset_name}_{log2_hashmap_size}.msgpack")
if __name__ == "__main__":
for i in range(16, 20):
for name in [
"chair", "drums", "ficus", "hotdog", "lego", "materials",
"mic", "ship"
]:
train_ngp(i, name)