-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparas_flops.py
62 lines (51 loc) · 1.65 KB
/
paras_flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import models
import torch
import torchvision
# import test_models as models
from thop import profile
model_names = sorted(
name
for name in models.__dict__
if name.islower() and not name.startswith("__") and callable(models.__dict__[name])
)
parser = argparse.ArgumentParser(description="PyTorch ImageNet Training")
parser.add_argument(
"--arch",
"-a",
metavar="ARCH",
default="eca_resnet50",
choices=model_names,
help="model architecture: " + " | ".join(model_names) + " (default: eca_resnet50)",
)
def main():
global args
args = parser.parse_args()
model = models.__dict__[args.arch]()
print(model)
input = torch.randn(1, 3, 224, 224)
model.train()
# model.eval()
flops, params = profile(model, inputs=(input,))
print("flops = ", flops)
print("params = ", params)
flops, params = clever_format([flops, params], "%.3f")
print("flops = ", flops)
print("params = ", params)
def clever_format(nums, format="%.2f"):
clever_nums = []
for num in nums:
if num > 1e12:
clever_nums.append(format % (num / 1024 ** 4) + "T")
elif num > 1e9:
clever_nums.append(format % (num / 1024 ** 3) + "G")
elif num > 1e6:
clever_nums.append(format % (num / 1024 ** 2) + "M")
elif num > 1e3:
clever_nums.append(format % (num / 1024) + "K")
else:
clever_nums.append(format % num + "B")
clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)
return clever_nums
if __name__ == "__main__":
main()