|
5 | 5 |
|
6 | 6 |
|
7 | 7 | @pytest.mark.parametrize(
|
8 |
| - "inputs, expected", |
| 8 | + "grid, number_of_signals, id_number, iq, stretching_factor, expected", |
9 | 9 | [
|
10 | 10 | (
|
11 |
| - [np.arange(10), 3, 0, [6.55, 0.357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], 0.25], |
| 11 | + np.arange(10), |
| 12 | + 3, |
| 13 | + 0, |
| 14 | + [6.55, 0.357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], |
| 15 | + 0.25, |
12 | 16 | [
|
13 | 17 | [6.55, 6.78, 6.55, 0, 0, 0, 0, 0, 0, 0],
|
14 | 18 | [0, 14.07893122, 35.36478086, 0, 0, 0, 0, 0, 0, 0],
|
15 | 19 | [0, -19.92049156, 11.6931482, 0, 0, 0, 0, 0, 0, 0],
|
16 | 20 | ],
|
17 | 21 | ),
|
18 | 22 | (
|
19 |
| - [np.arange(5), 10, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], 1.25], |
| 23 | + np.arange(5), |
| 24 | + 10, |
| 25 | + 0, |
| 26 | + [-11.47, -10.688, -8.095, -29.44, 14.38], |
| 27 | + 1.25, |
20 | 28 | [
|
21 | 29 | [-11.47, -10.8444, -9.1322, -16.633, -20.6760],
|
22 | 30 | [0, -0.50048, -3.31904, 40.9824, -112.1792],
|
23 | 31 | [0, 0.800768, 5.310464, -65.57184, 179.48672],
|
24 | 32 | ],
|
25 | 33 | ),
|
26 | 34 | (
|
27 |
| - [np.arange(5), 2, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], 0.88], |
| 35 | + np.arange(5), |
| 36 | + 2, |
| 37 | + 0, |
| 38 | + [-11.47, -10.688, -8.095, -29.44, 14.38], |
| 39 | + 0.88, |
28 | 40 | [
|
29 | 41 | [-11.47, -10.3344, -13.9164, -11.5136, 0],
|
30 | 42 | [0, -3.3484, 55.1265, -169.7572, 0],
|
31 | 43 | [0, 7.609997, -125.2876, 385.81189, 0],
|
32 | 44 | ],
|
33 | 45 | ),
|
34 | 46 | (
|
35 |
| - [np.arange(10), 1, 2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 0.88], |
| 47 | + np.arange(10), |
| 48 | + 1, |
| 49 | + 2, |
| 50 | + [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], |
| 51 | + 0.88, |
36 | 52 | [
|
37 | 53 | [1, 2.1364, 3.2727, 4.4091, 5.5455, 6.6818, 7.8182, 8.9545, 0, 0],
|
38 | 54 | [0, -1.29, -2.58, -3.87, -5.165, -6.45, -7.74, -9.039, 0, 0],
|
39 | 55 | [0, 2.93, 5.869, 8.084, 11.739, 14.674, 17.608, 20.5437, 0, 0],
|
40 | 56 | ],
|
41 | 57 | ),
|
42 | 58 | (
|
| 59 | + np.arange(14), |
| 60 | + 100, |
| 61 | + 3, |
43 | 62 | [
|
44 |
| - np.arange(14), |
45 |
| - 100, |
46 |
| - 3, |
47 |
| - [ |
48 |
| - -2.9384, |
49 |
| - -1.4623, |
50 |
| - -2.0913, |
51 |
| - 4.6304, |
52 |
| - -1.2127, |
53 |
| - 1.4737, |
54 |
| - -0.3791, |
55 |
| - 1.7506, |
56 |
| - -1.5068, |
57 |
| - -2.7625, |
58 |
| - 0.9617, |
59 |
| - -0.3494, |
60 |
| - -0.3862, |
61 |
| - 2.7960, |
62 |
| - ], |
63 |
| - 0.55, |
| 63 | + -2.9384, |
| 64 | + -1.4623, |
| 65 | + -2.0913, |
| 66 | + 4.6304, |
| 67 | + -1.2127, |
| 68 | + 1.4737, |
| 69 | + -0.3791, |
| 70 | + 1.7506, |
| 71 | + -1.5068, |
| 72 | + -2.7625, |
| 73 | + 0.9617, |
| 74 | + -0.3494, |
| 75 | + -0.3862, |
| 76 | + 2.7960, |
64 | 77 | ],
|
| 78 | + 0.55, |
65 | 79 | [
|
66 | 80 | [-2.9384, -1.9769, 0.9121, 0.6314, 0.8622, -2.4239, -0.2302, 1.9281, 0, 0, 0, 0, 0, 0],
|
67 | 81 | [0, 2.07933, 38.632, 18.3748, 43.07305, -61.557, 26.005, -73.637, 0, 0, 0, 0, 0, 0],
|
68 | 82 | [0, -7.56, -140.480, -66.81, -156.6293, 223.84, -94.564, 267.7734, 0, 0, 0, 0, 0, 0],
|
69 | 83 | ],
|
70 | 84 | ),
|
71 | 85 | (
|
72 |
| - [np.arange(11), 20, 4, [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], 0.987], |
| 86 | + np.arange(11), |
| 87 | + 20, |
| 88 | + 4, |
| 89 | + [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], |
| 90 | + 0.987, |
73 | 91 | [
|
74 | 92 | [0, 0.2533, 0.5066, 0.7599, 1.0132, 1.2665, 1.5198, 1.7730, 2.0263, 2.2796, 0],
|
75 | 93 | [0, -0.2566, -0.5132, -0.7699, -1.0265, -1.2831, -1.5398, -1.7964, -2.0530, -2.3097, 0],
|
76 | 94 | [0, 0.5200, 1.0400, 1.56005, 2.08007, 2.6000, 3.1201, 3.6401, 4.1601, 4.6801, 0],
|
77 | 95 | ],
|
78 | 96 | ),
|
79 | 97 | (
|
80 |
| - [np.arange(9), 15, 3, [-1, -2, -3, -4, -5, -6, -7, -8, -9], -0.4], |
| 98 | + np.arange(9), |
| 99 | + 15, |
| 100 | + 3, |
| 101 | + [-1, -2, -3, -4, -5, -6, -7, -8, -9], |
| 102 | + -0.4, |
81 | 103 | [[-1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]],
|
82 | 104 | ),
|
83 | 105 | ],
|
84 | 106 | )
|
85 |
| -def test_apply_stretch(inputs, expected): |
86 |
| - component = ComponentSignal(inputs[0], inputs[1], inputs[2]) |
87 |
| - component.iq = inputs[3] |
88 |
| - component.stretching_factors[0] = inputs[4] |
| 107 | +def test_apply_stretch(grid, number_of_signals, id_number, iq, stretching_factor, expected): |
| 108 | + component = ComponentSignal(grid, number_of_signals, id_number) |
| 109 | + component.iq = iq |
| 110 | + component.stretching_factors[0] = stretching_factor |
89 | 111 | actual = component.apply_stretch(0)
|
90 | 112 | np.testing.assert_allclose(actual, expected, rtol=1e-01)
|
91 | 113 |
|
92 | 114 |
|
93 | 115 | @pytest.mark.parametrize(
|
94 |
| - "inputs, expected", |
| 116 | + "grid, number_of_signals, id_number, iq, weight, expected", |
95 | 117 | [
|
96 |
| - ([np.arange(5), 2, 0, [0, 1, 2, 3, 4], 0.5], [0, 0.5, 1, 1.5, 2]), |
97 |
| - ([np.arange(5), 20, 2, [0, -1, -2, -3, -4], 0.25], [0, -0.25, -0.5, -0.75, -1]), |
98 |
| - ([np.arange(40), 200, 4, np.arange(0, 10, 0.25), 0.3], np.arange(0, 10, 0.25) * 0.3), |
99 |
| - ([np.arange(1), 10, 2, [10.5, 11.5, -10.5], 0], [0, 0, 0]), |
100 |
| - ([[-12, -10, -15], 5, 2, [-0.5, -1, -1.2], 0.9], [-0.45, -0.9, -1.08]), |
101 |
| - ([[-12, -10, -15], 5, 2, [0, 0, 0], 0.9], [0, 0, 0]), |
| 118 | + (np.arange(5), 2, 0, [0, 1, 2, 3, 4], 0.5, [0, 0.5, 1, 1.5, 2]), |
| 119 | + (np.arange(5), 20, 2, [0, -1, -2, -3, -4], 0.25, [0, -0.25, -0.5, -0.75, -1]), |
| 120 | + (np.arange(40), 200, 4, np.arange(0, 10, 0.25), 0.3, np.arange(0, 10, 0.25) * 0.3), |
| 121 | + (np.arange(1), 10, 2, [10.5, 11.5, -10.5], 0, [0, 0, 0]), |
| 122 | + ([-12, -10, -15], 5, 2, [-0.5, -1, -1.2], 0.9, [-0.45, -0.9, -1.08]), |
| 123 | + ([-12, -10, -15], 5, 2, [0, 0, 0], 0.9, [0, 0, 0]), |
102 | 124 | ],
|
103 | 125 | )
|
104 |
| -def test_apply_weight(inputs, expected): |
105 |
| - component = ComponentSignal(inputs[0], inputs[1], inputs[2]) |
106 |
| - component.iq = np.array(inputs[3]) |
107 |
| - component.weights[0] = inputs[4] |
| 126 | +def test_apply_weight(grid, number_of_signals, id_number, iq, weight, expected): |
| 127 | + component = ComponentSignal(grid, number_of_signals, id_number) |
| 128 | + component.iq = np.array(iq) |
| 129 | + component.weights[0] = weight |
108 | 130 | actual = component.apply_weight(0)
|
109 | 131 | np.testing.assert_allclose(actual, expected, rtol=1e-04)
|
0 commit comments