This repository has been archived by the owner on Oct 9, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example3.py
300 lines (217 loc) · 7.82 KB
/
example3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python3
# @author [email protected]
# @author [email protected]
# @date 10/05/2019
import numpy as np
import sys
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rcParams["text.usetex"] = True
matplotlib.rcParams["font.size"] = 12
matplotlib.rcParams['text.latex.preamble'] = [
r'\usepackage{xfrac}']
example = "Cubic"
#############################################################################
# Solve the system
#############################################################################
def solve(M,f):
return np.linalg.solve(M,f)
#############################################################################
# Exact solution
#############################################################################
def exactSolution(x):
if example == "Cubic":
return x*(3.-x)*(3.+x)/6.
elif example == "Quartic":
return x*(16.-x*x*x)/12.
elif example == "Quadratic":
return x*(4.-x)/2.
elif example == "Linear":
return x
else:
print("Error: Either provide linear or quadratic")
sys.exit()
#############################################################################
# Loading
#############################################################################
def f(x):
if example == "Cubic":
return x
elif example == "Quartic":
return x*x
elif example == "Quadratic":
return 1
elif example == "Linear":
return 0
else:
print("Error: Either provide linear or quadratic")
sys.exit()
#############################################################################
# Assemble the stiffness matrix for the local linear elasticity model (LLEM)
#############################################################################
def LLEM(n,h):
MLLEM = np.zeros([n,n])
MLLEM[0][0] = 1
for i in range(1,n-1):
MLLEM[i][i-1] = -2
MLLEM[i][i] = 4
MLLEM[i][i+1] = -2
MLLEM[n-1][n-1] = 3*h
MLLEM[n-1][n-2] = -4*h
MLLEM[n-1][n-3] = h
MLLEM *= 1./(2.*h*h)
return MLLEM
#############################################################################
# Assemble the stiffness matrix for the extended domain model (EMD)
#############################################################################
def EDM(n,h):
MEDM = np.zeros([n,n])
MEDM[0][0] = 1.
MEDM[1][0] = -6.
MEDM[1][1] = 11.
MEDM[1][2] = -4.
MEDM[1][3] = -1.
for i in range(2,n-2):
MEDM[i][i-2] = -1.
MEDM[i][i-1] = -4.
MEDM[i][i] = 10.
MEDM[i][i+1] = -4.
MEDM[i][i+2] = -1.
MEDM[n-2][n-1] = -6.
MEDM[n-2][n-2] = 11.
MEDM[n-2][n-3] = -4.
MEDM[n-2][n-4] = -1.
MEDM[n-1][n-1] = 12.*h
MEDM[n-1][n-2] = -16.*h
MEDM[n-1][n-3] = 4.*h
MEDM *= 1./(8.*h*h)
return MEDM
#############################################################################
# Assemble the stiffness matrix for the varibale horizon model (VHM)
#############################################################################
def VHM(n,h):
MVHM = np.zeros([n,n])
MVHM[0][0] = 1.
MVHM[1][0] = -8.
MVHM[1][1] = 16.
MVHM[1][2] = -8.
for i in range(2,n-2):
MVHM[i][i-2] = -1.
MVHM[i][i-1] = -4.
MVHM[i][i] = 10.
MVHM[i][i+1] = -4.
MVHM[i][i+2] = -1.
MVHM[n-2][n-1] = -8.
MVHM[n-2][n-2] = 16.
MVHM[n-2][n-3] = -8.
MVHM[n-1][n-1] = 12.*h
MVHM[n-1][n-2] = -16.*h
MVHM[n-1][n-3] = 4.*h
MVHM *= 1./(8.*h*h)
return MVHM
#############################################################################
# Loading for the LLEM and VHM
#############################################################################
def force(n,h):
force = np.zeros(n)
for i in range(1,n-1):
force[i] = f(i * h)
force[n-1] = 1
return force
#############################################################################
# Compute the maximum relative error for the LLEM, the EDM, and the VHM
#############################################################################
def error(n,h,u):
e = []
for i in range(1,n):
e.append(abs((exactSolution(i*h)-u[i])/exactSolution(i*h)))
return max(e)
#############################################################################
# Compute error at each grid point
#############################################################################
def errorplot(n,h,u):
ep = []
for i in range(0,n):
ep.append(exactSolution(i*h)-u[i])
return ep
#############################################################################
#Computation
#############################################################################
figure, (ax1, ax2,ax3) = plt.subplots(3, 1, sharex=True)
markers = ['|','.','*','+']
print("n,h,LLEM,EDM,VHM")
for i in range(2,6):
n = np.power(2,i)
h = 1./n
nodes = n+1
x = np.linspace(0,1.,nodes)
uLLEM = solve(LLEM(nodes,h),force(nodes,h))
uEDM = solve(EDM(nodes,h),force(nodes,h))
uVHM = solve(VHM(nodes,h),force(nodes,h))
eEDM = errorplot(nodes,h,uEDM)
print(str(n)+","+str(h)+","+str(error(nodes,h,uLLEM))+","+str(error(nodes,h,uEDM))+","+str(error(nodes,h,uVHM)))
# Plot the displacement
if n == 8:
ax1.plot(x,exactSolution(x),label="Exact",c="black")
ax2.plot(x,exactSolution(x),label="Exact",c="black")
ax3.plot(x,exactSolution(x),label="Exact",c="black")
ax1.scatter(x, uLLEM,label=h)
ax2.scatter(x, uEDM,label=h)
ax3.scatter(x, uVHM,label=h)
lines_labels = [ax1.get_legend_handles_labels()]
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
figure.legend(lines, labels,loc=8,ncol=5)
figure.suptitle(example+" Solution")
plt.xlabel("Node position")
ax1.set_title('LLEM')
ax1.set_ylabel('u')
ax1.grid()
ax2.set_title('EDM')
ax2.grid()
ax2.set_ylabel('u')
ax3.set_title('VHM')
ax3.grid()
ax3.set_ylabel('u')
plt.savefig(example+"-displacement.pdf",bbox_inches='tight')
#############################################################################
# Figure with errors in displacement
#############################################################################
plt.figure(2)
markers = ['s','o','x','.']
for i in range(2,6):
n = np.power(2,i)
h = 1./n
nodes = n+1
x = np.linspace(0,1.,nodes)
uEDM = solve(EDM(nodes,h),force(nodes,h))
eEDM = errorplot(nodes,h,uEDM)
plt.scatter(x,eEDM,label="$\delta$="+str(2*h), marker=markers[i-2], c="black")
plt.legend(loc= "lower left")
plt.xlabel("x")
plt.ylabel('Error in displacement')
plt.xscale('linear')
plt.yscale('linear')
plt.title("Example with "+example+" Solution using EDM")
plt.grid(True)
plt.savefig("EDM-Error-"+example+"Solution.pdf",bbox_inches='tight')
#############################################################################
# Figure with errors in displacement
#############################################################################
plt.figure(3)
markers = ['s','o','x','.']
for i in range(2,6):
n = np.power(2,i)
h = 1./n
nodes = n+1
x = np.linspace(0,1.,nodes)
uVHM = solve(VHM(nodes,h),force(nodes,h))
eVHM = errorplot(nodes,h,uVHM)
plt.scatter(x,eVHM,label="$\delta$="+str(2*h), marker=markers[i-2], c="black")
plt.legend(loc= "upper left")
plt.xlabel("x")
plt.ylabel('Error in displacement')
plt.xscale('linear')
plt.yscale('linear')
plt.title("Example with "+example+" Solution using VHM")
plt.grid(True)
plt.savefig("VHM-Error-"+example+"Solution.pdf",bbox_inches='tight')