-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli_runner.py
78 lines (68 loc) · 2.77 KB
/
cli_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import yaml
import argparse
from hf_lib.trainer import Trainer
from hf_lib.predictor import Predictor
def main():
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="command")
train_parser = subparsers.add_parser("train")
predict_parser = subparsers.add_parser("predict")
train_parser.add_argument("--config", type=str)
train_parser.add_argument("--data_path", type=str)
train_parser.add_argument("--out_path", type=str)
predict_parser.add_argument("--config", type=str)
predict_parser.add_argument("--data_path", type=str)
predict_parser.add_argument("--out_path", type=str)
args = parser.parse_args()
with open(args.config) as c:
config = yaml.safe_load(c)
if args.command == "train":
model_arch = config['HF']['model_arch']
model_name = config['HF']['model_name']
if args.data_path:
data_path = args.data_path
else:
data_path = config['CONFIG']['data_path']
if args.out_path:
out_path = args.out_path
else:
out_path = config['CONFIG']['out_path']
epochs = int(config['CONFIG']['epochs'])
batch_size = int(config['CONFIG']['batch_size'])
test_size = float(config['CONFIG']['test_size'])
mytrainer = Trainer(model_arch=model_arch,
model_name=model_name,
data_path=data_path,
out_path=out_path,
epochs=epochs,
batch_size=batch_size,
test_size=test_size
)
mytrainer.run()
elif args.command == "predict":
model_arch = config['HF']['model_arch']
model_name = config['HF']['model_name']
state_dict_path = config['CONFIG']['state_dict_path']
labels = config['CONFIG']['labels']
text_col = int(config['CONFIG']['text_col'])
if args.data_path:
data_path = args.data_path
else:
data_path = config['CONFIG']['data_path']
if args.out_path:
out_path = args.out_path
else:
out_path = config['CONFIG']['out_path']
batch_size = int(config['CONFIG']['batch_size'])
mypredictor = Predictor(model_arch=model_arch,
model_name=model_name,
state_dict_path=state_dict_path,
labels=labels,
text_col=text_col,
data_path=data_path,
out_path=out_path,
batch_size=batch_size
)
mypredictor.run()
if __name__ == '__main__':
main()