-
Notifications
You must be signed in to change notification settings - Fork 6
/
schrod.py
262 lines (207 loc) · 8.87 KB
/
schrod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
A class for representing and solving Schrodinger's equaiton
"""
from __future__ import print_function
import numpy as np
from scipy.integrate import simps
from scipy import fftpack
import warnings
import collections
class Schrod:
def __init__(self, x, V, n_basis=20):
"""
Parameters
----------
x : array_like, float
Length-N array of evenly spaced spatial coordinates
V : array_like, float
Length-N array giving the potential at each x
n_basis : int
The number of square-well basis states used in the calculation (default=20)
"""
# Set the inputs
self.x = x
self.V = V
self.n_basis = n_basis
# Validate the inputs
N = self.x.size
assert N > 1
assert self.x.shape == (N,)
assert (np.diff(x) >= 0).all()
V_shape = self.V.shape
V_shape_len = len(V_shape)
assert V_shape_len == 1 or V_shape_len == 2
if V_shape_len == 1:
assert V_shape == (N,)
elif V_shape_len == 2:
assert V_shape[1] == N
assert isinstance(n_basis, int)
assert n_basis > 0
# Set the derived quantities
self._N = N
self.dx = x[1] - x[0]
self._x_min = x[0]
self._x_max = x[-1]
self.box_size = np.abs(self._x_max - self._x_min)
self._x_center = self._x_min + self.box_size / 2.
self.dk = 2 * np.pi / self.box_size
self.k = -0.5 * (self._N-1) * self.dk + self.dk * np.arange(self._N)
# Allocate memory for eigenvalues and eigenvectors
self.eigs = np.zeros(shape=(V_shape[0], n_basis))
self.vecs = np.zeros(shape=(V_shape[0], n_basis, n_basis))
def solve(self, verbose=False):
if verbose:
print("Calculating the Hamiltonian matrices...")
Hs = self._H(verbose)
if verbose:
print("Diagonalizing the Hamiltonian matrices...")
self.eigs, self.vecs = np.linalg.eigh(Hs, UPLO='L')
def solve_to_tol(self, n_eig, tol=1e-6, n_init=5, n_max=50, n_step=5, err_type = "max_mean", verbose=False):
"""
Increase the basis size until the maximum change among the lowest
<n_eig> eigenvalues is less than <tol>
:param n_eig: The number of eigenvalues (lowest) to check for convergence.
:param tol: The desired maximum relative error in the output
:param n_init: The initial number of basis states. Must satisfy n_init >= n_eig
:param n_max: The maximum number of basis states to include before stopping.
:param n_step: The number of basis states added in each convergence test.
:return: A tuple with the following information (A, B, C):
A: Boolean. True if maximum measured relative error less than or equal to <tol>
B: The number of basis states included when convergence reached.
C: The measured relative error
:param err_type: The type of error to calculate, one of
"max": the maximum error is no greater than :param tol:
"mean": the mean error is no greater than :param tol:
"max_mean" (default): the maximum of the mean error per eigenvalue is no greater than :param tol:
:param verbose: bool, whether to print diagnostic information
"""
# The initial truncation
self.set_n_basis(n_init)
self.solve()
eigs = self.eigs[..., 0:n_eig]
err = 1
# The maximum relative error in the lowst <n_eig> eigenvalues
measured_tol = 1 # the max rel. err. of the eigenvalues
n = n_init
passed = False
while (not passed) and (n+n_step <= n_max):
n += n_step
self.set_n_basis(n)
self.solve()
eigs_new = self.eigs[..., 0:n_eig]
err = np.abs((eigs - eigs_new) / 0.5 / (eigs + eigs_new))
if err_type is "max":
measured_tol = np.max(err)
elif err_type is "mean":
measured_tol = np.mean(err)
elif err_type is "max_mean":
measured_tol = np.max(np.mean(err, axis=0))
else:
warnings.warn("Invalid <err_type>. Must be one of 'max', 'mean' or 'max_mean'. Assuming 'max_mean'.")
measured_tol = np.max(np.mean(err, axis=0))
eigs = eigs_new
if verbose:
print("Number of basis states: %i \n Measured error: %.2e" % (n, measured_tol))
if measured_tol <= tol:
passed = True
if not passed:
warnings.warn("Unable to achieve desired tolerance of %.2e.\n"
"Achieved a tolerance of %.2e.\n"
"Try increasing the maximum number of basis states." % (tol, measured_tol))
solution = collections.namedtuple('Solution',
['eig_errs', 'n_basis_converged', 'passed'])
return solution(err, n, passed)
def psi_eig_x(self):
basis_vec = np.arange(1, self.vecs.shape[-1] + 1)
return np.tensordot(self.vecs,
self._psi0(basis_vec, self.x), axes=(-2,0))
def prob_eig_x(self):
return self.psi_eig_x() ** 2
def psi_tx(self, psi_0_x, t_vec):
# Caculate the overlap of the initial wavefunction with all of the eigenstates
psis = self.psi_eig_x()
coeffs = simps(x=self.x, y=psi_0_x * psis, axis=-1)
# Calculate the complex phases at each time
phases = np.exp(-1j * np.outer(t_vec, self.eigs))
# Calculate the wavefunction on the grid at each time slice
psi_of_t = np.dot(phases * coeffs, psis)
print(psi_of_t.shape)
return psi_of_t
def prob_tx(self, psi_0, t_vec):
return np.absolute(self.psi_tx(psi_0, t_vec)) ** 2
def psi_tk(self, psi_0, t_vec):
psitx = self.psi_tx(psi_0,t_vec)
psitk = fftpack.fft(psitx, overwrite_x=True)
return fftpack.fftshift(psitk, axes=-1)
def prob_tk(self, psi_0, t_vec):
return np.absolute(self.psi_tk(psi_0, t_vec)) ** 2
def expected_E(self, psi):
integrand = -0.5 * np.conj(psi) * np.gradient(np.gradient(psi, self.dx, axis=-1), self.dx, axis=-1) + \
np.absolute(psi)**2 * self.V
return np.real(simps(x=self.x, y=integrand, axis=-1))
# Set functions
def set_x(self, x):
self.x = x
self._x_min = x[0]
self._x_max = x[-1]
self.box_size = self._x_max = self._x_min
self._x_center = self._x_min + self.box_size / 2.
def set_V(self, V):
self.V = V
def set_n_basis(self, n_basis):
self.n_basis = n_basis
# Private functions:
def _H(self, verbose=False):
n_matels = self.n_basis * (self.n_basis + 1) / 2
# initialize an empty hamiltonian(s)
h=0
if len(self.V.shape) is 2:
h = np.zeros((self.V.shape[0], self.n_basis, self.n_basis))
elif len(self.V.shape) is 1:
h = np.zeros(( self.n_basis, self.n_basis))
for m in range(self.n_basis):
for n in range(m + 1):
h[..., m, n] = self._Vmn(m, n)
# Print a status
n_sofar = (m + 1) * m / 2 + n + 1
percent = n_sofar / n_matels * 100
if verbose:
print("\r Status: %0.2f %% complete" % percent, end='')
if verbose:
print("")
return h + np.diag(self._E0(np.arange(1, self.n_basis + 1)))
def _psi0(self, n, x):
"""
Evaluate the nth box state at x
:param n: array-like, 1-indexed state labels
:param x: array-like, positions between -1 and 1
:return: an array of shape (len(n), len(x))
"""
kn = n * np.pi / self.box_size
return np.sqrt(2 / self.box_size) * \
np.sin(np.outer(kn, x - self._x_center + self.box_size / 2))
def _E0(self, n):
"""
The nth energy level in the box
:param n: the state label
:return: the energy
"""
return n ** 2 * np.pi ** 2 / (2. * self.box_size ** 2)
def _matel_integrand(self, m, n):
"""
The n,m matrix element of the V potential evaluated at the x coordinates
:param n: the row index
:param m: the column index
:param x: array-like, a vector of x coordinates
:param V: array-like, an array of potential values. The rows correspond to
the entries in x. The columns correspond to different potentials
:return: the integrand of the matrix element
"""
return self._psi0(m + 1, self.x) * self._psi0(n + 1, self.x) * self.V
def _Vmn(self, m, n):
return simps(x=self.x, y=self._matel_integrand(m, n), axis=-1)
if __name__ == "__main__":
x = np.linspace(-1,1,10)
V = 1/2 * x**2
eqn = Schrod(x, V)
print(eqn.k)