forked from Ya-Tin/PDFQueryChatLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
111 lines (94 loc) · 4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import FAISS
# from htmltemplates import css, bot_template, user_template
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
import google.generativeai as genai
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import os
load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text+=page.extract_text()
return text
def chonky(text):
text_splitter= CharacterTextSplitter(separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Try using Context for finding answer, but if the answer is not available in the context, reply with "Not enough information is available in the documents provided, but I can get an answer based on the Internet knowledge" and generate a response using Internet data.
Context:
{context}
Question:
{question}
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.7)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question},
return_only_outputs=True
)
# Append to the session state to maintain chat history
st.session_state["messages"].append({"role": "user", "content": user_question})
st.session_state["messages"].append({"role": "assistant", "content": response["output_text"]})
def main():
st.set_page_config(page_title="PAQ Bot", page_icon="🤖")
# st.write(css, unsafe_allow_html=True)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
st.header("🤖 PAQ Bot")
# Display chat messages
for msg in st.session_state["messages"]:
st.chat_message(msg["role"]).write(msg["content"])
# Chat input box
user_question = st.chat_input("Input your Query here and Press 'Process Query' button")
if user_question:
user_input(user_question)
# Sidebar
with st.sidebar:
st.header("PAQ Bot")
st.subheader("Your Documents")
pdf_docs = st.file_uploader("Pick a PDF file", type="pdf", accept_multiple_files=True)
if st.button("Process Query") and pdf_docs:
with st.spinner("Processing"):
# Get the pdf text
raw_text = get_pdf_text(pdf_docs)
# Get the text chunks
text_chunks = chonky(raw_text)
# Create the vector store
vector_store = get_vectorstore(text_chunks)
# Notify user
st.success("Done")
if not pdf_docs:
st.info("Please upload a PDF file to start.")
st.write("Made with ❤️ by PEC ACM")
"[View the source code](https://github.com/Ya-Tin/PDFQueryChatLM.git)"
if __name__ == "__main__":
main()