forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
152 lines (122 loc) · 5.31 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from torchvision.models.alexnet import alexnet
from torchvision.models.inception import inception_v3
from torchvision.models.densenet import densenet121
from torchvision.models.resnet import resnet50
from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn
from model_defs.mnist import MNIST
from model_defs.squeezenet import SqueezeNet
from model_defs.super_resolution import SuperResolutionNet
from model_defs.srresnet import SRResNet
from model_defs.dcgan import _netD, _netG, weights_init, bsz, imgsz, nz
from model_defs.op_test import DummyNet, ConcatNet, PermuteNet, PReluNet
from test_pytorch_common import TestCase, run_tests, skipIfNoLapack
import torch
import torch.onnx
import torch.onnx.utils
from torch.autograd import Variable
from torch.onnx import OperatorExportTypes
import unittest
import caffe2.python.onnx.backend as backend
from verify import verify
if torch.cuda.is_available():
def toC(x):
return x.cuda()
else:
def toC(x):
return x
BATCH_SIZE = 2
class TestModels(TestCase):
def exportTest(self, model, inputs, rtol=1e-2, atol=1e-7):
graph = torch.onnx.utils._trace(model, inputs, OperatorExportTypes.ONNX)
torch._C._jit_pass_lint(graph)
verify(model, inputs, backend, rtol=rtol, atol=atol)
def test_ops(self):
x = Variable(
torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)
)
self.exportTest(toC(DummyNet()), toC(x))
def test_prelu(self):
x = Variable(
torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)
)
self.exportTest(PReluNet(), x)
def test_concat(self):
input_a = Variable(torch.randn(BATCH_SIZE, 3))
input_b = Variable(torch.randn(BATCH_SIZE, 3))
inputs = ((toC(input_a), toC(input_b)), )
self.exportTest(toC(ConcatNet()), inputs)
def test_permute(self):
x = Variable(torch.randn(BATCH_SIZE, 3, 10, 12))
self.exportTest(PermuteNet(), x)
@unittest.skip("This model takes too much memory")
def test_srresnet(self):
x = Variable(torch.randn(1, 3, 224, 224).fill_(1.0))
self.exportTest(toC(SRResNet(rescale_factor=4, n_filters=64, n_blocks=8)), toC(x))
@skipIfNoLapack
@unittest.skip("This model is broken, see https://github.com/pytorch/pytorch/issues/18429")
def test_super_resolution(self):
x = Variable(
torch.randn(BATCH_SIZE, 1, 224, 224).fill_(1.0)
)
self.exportTest(toC(SuperResolutionNet(upscale_factor=3)), toC(x), atol=1e-6)
def test_alexnet(self):
x = Variable(
torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0)
)
self.exportTest(toC(alexnet()), toC(x))
@unittest.skip("Waiting for https://github.com/pytorch/pytorch/pull/3100")
def test_mnist(self):
x = Variable(torch.randn(BATCH_SIZE, 1, 28, 28).fill_(1.0))
self.exportTest(toC(MNIST()), toC(x))
def test_vgg16(self):
# VGG 16-layer model (configuration "D")
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg16()), toC(x))
def test_vgg16_bn(self):
# VGG 16-layer model (configuration "D") with batch normalization
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg16_bn()), toC(x))
def test_vgg19(self):
# VGG 19-layer model (configuration "E")
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg19()), toC(x))
def test_vgg19_bn(self):
# VGG 19-layer model (configuration 'E') with batch normalization
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(vgg19_bn()), toC(x))
def test_resnet(self):
# ResNet50 model
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(resnet50()), toC(x), atol=1e-6)
def test_inception(self):
x = Variable(
torch.randn(BATCH_SIZE, 3, 299, 299) + 1.)
self.exportTest(toC(inception_v3()), toC(x))
def test_squeezenet(self):
# SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
# <0.5MB model size
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
sqnet_v1_0 = SqueezeNet(version=1.1)
self.exportTest(toC(sqnet_v1_0), toC(x))
# SqueezeNet 1.1 has 2.4x less computation and slightly fewer params
# than SqueezeNet 1.0, without sacrificing accuracy.
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
sqnet_v1_1 = SqueezeNet(version=1.1)
self.exportTest(toC(sqnet_v1_1), toC(x))
@unittest.skip("Temporary - waiting for https://github.com/onnx/onnx/pull/1773.")
def test_densenet(self):
# Densenet-121 model
x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
self.exportTest(toC(densenet121()), toC(x))
def test_dcgan_netD(self):
netD = _netD(1)
netD.apply(weights_init)
input = Variable(torch.Tensor(bsz, 3, imgsz, imgsz).normal_(0, 1))
self.exportTest(toC(netD), toC(input))
def test_dcgan_netG(self):
netG = _netG(1)
netG.apply(weights_init)
input = Variable(torch.Tensor(bsz, nz, 1, 1).normal_(0, 1))
self.exportTest(toC(netG), toC(input))
if __name__ == '__main__':
run_tests()