forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Linear.cpp
531 lines (500 loc) · 24.4 KB
/
Linear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/WrapDimUtilsMulti.h>
#include <array>
#include <cctype>
#include <cstddef>
#include <sstream>
#include <string>
#include <vector>
namespace at { namespace native {
Tensor linear(const Tensor& input, const Tensor& weight, const Tensor& bias) {
if (input.is_mkldnn()) {
return at::mkldnn_linear(input, weight, bias);
}
if (input.dim() == 2 && bias.defined()) {
// Fused op is marginally faster.
return at::addmm(bias, input, weight.t());
}
auto output = at::matmul(input, weight.t());
if (bias.defined()) {
output.add_(bias);
}
return output;
}
// sumproduct_pair computes `(left*right).sum(sumdims)` by means of permutation and
// batch matrix multiplication
// its main purpose is to provide a pairwise reduction for einsum
static Tensor sumproduct_pair(const Tensor& left_, const Tensor& right_, IntArrayRef sum_dims_, bool keepdim) {
// assumes that tensors have been pre-unsqueezed (so that all dimensions match - after broadcasting)
// but makes no other assumptions on the order of dimensions
TORCH_CHECK(left_.dim()==right_.dim(), "number of dimensions must match");
if (sum_dims_.size() == 0)
return at::mul(left_, right_);
int64_t dim = left_.dim();
auto sum_dims = at::dim_list_to_bitset(sum_dims_, dim);
// dimensions that will be part of the output (i.e. not summed over) in three vectors
// dims in lro appear in left, right and output, similarly lo: left and output, ro: right and output
// also the sizes are kept track of for reshaping
std::vector<int64_t> lro, lo, ro;
int64_t lro_size = 1, lo_size = 1, ro_size = 1, sum_size = 1;
Tensor left = left_;
Tensor right = right_;
for (int64_t i = 0; i < dim; i++) {
auto sl = left.size(i)>1;
auto sr = right.size(i)>1;
if (sum_dims[i]) { // first dimensions that will be summed over after multiplication
if (sl && sr) { // dimensions nontrivially in both left and right must be of the same size
TORCH_CHECK(left.size(i)==right.size(i), "non-broadcast dimensions must match");
sum_size *= left.size(i);
} else if (sl) { // if it is only in one of left and right, we can sum right away
left = left.sum(i, true);
} else if (sr) {
right = right.sum(i, true);
}
} else if (sl && sr) { // now deal with dimensions dimensions that will be in the output
// dimensions nontrivially in both left and right must be of the same size
TORCH_CHECK(left.size(i)==right.size(i), "non-broadcast dimensions must match");
lro.push_back(i);
lro_size *= left.size(i);
} else if (sl) { // keep track of dimensions appearing only once
lo.push_back(i);
lo_size *= left.size(i);
} else {
ro.push_back(i);
ro_size *= right.size(i);
}
}
// we now work with the following permutations / shapes.
// the pipeline is permute inputs -> reshape inputs -> batch matrix mul -> reshape(view) output -> permute output
// output: "lro, lo, 1-for-summed-dims, ro" with orgiginal shape dimensions
// left: "lro, lo, summed" permuted with lpermutation and the three flattened
// right: "lro, summed, ro" permuted with rpermutation and the three flattened
// then the permuted output is a view of bmm(left, right)
// finally, opermutation reverts the permutation to the original order of dimensions
std::vector<int64_t> out_size;
for (auto& d : lro) out_size.push_back(left.size(d));
for (auto& d : lo) out_size.push_back(left.size(d));
for (auto& d : sum_dims_) { out_size.push_back(1); (void)(d); }; // avoid warining about not using d
for (auto& d : ro) out_size.push_back(right.size(d));
std::vector<int64_t> lpermutation(lro);
lpermutation.insert(lpermutation.end(), lo.begin(), lo.end());
lpermutation.insert(lpermutation.end(), sum_dims_.begin(), sum_dims_.end());
lpermutation.insert(lpermutation.end(), ro.begin(), ro.end());
std::vector<int64_t> rpermutation(lro);
rpermutation.insert(rpermutation.end(), sum_dims_.begin(), sum_dims_.end());
rpermutation.insert(rpermutation.end(), ro.begin(), ro.end());
rpermutation.insert(rpermutation.end(), lo.begin(), lo.end());
std::vector<int64_t> opermutation(lro.size()+lo.size()+sum_dims_.size()+ro.size(), -1);
{
int64_t i = 0;
for (auto it = lro.begin(); it != lro.end(); i++, it++) {
opermutation[*it] = i;
}
for (auto it = lo.begin(); it != lo.end(); i++, it++) {
opermutation[*it] = i;
}
for (auto it = sum_dims_.begin(); it != sum_dims_.end(); i++, it++) {
opermutation[*it] = i;
}
for (auto it = ro.begin(); it != ro.end(); i++, it++) {
opermutation[*it] = i;
}
}
// now we can execute the operations above
left = left.permute(lpermutation).reshape({lro_size, lo_size, sum_size});
right = right.permute(rpermutation).reshape({lro_size, sum_size, ro_size});
Tensor result = at::bmm(left, right);
result = result.view(out_size).permute(opermutation);
// finally squeeze summed dimensions if desired
if (! keepdim) {
auto sizes = result.sizes().vec();
for (int i = dim-1; i>=0; i--) {
if (sum_dims[i]) {
sizes.erase(sizes.begin() + i);
}
}
result = result.view(sizes);
}
return result;
}
Tensor einsum(std::string eqn, TensorList tensors) {
constexpr size_t number_of_letters = 26;
std::string in_eqn;
size_t pos;
// The equation is given in terms of single lowercase letters ('a'..'z') and potentially an ellipsis.
// Internally, we represent it using indices from 0 to num_total_dimensions, with each letter
// mapped to an index and the ellipsis ('...') being mapped to a number of consequtive indices.
// The mapping of letters to internal indices is given in letter_mapping. A value of -1 means that
// the letter has not been assigned an index yet (because it has not been seen).
// The ellipsis is defined by first_ell_idx (the first index) and num_ell_idxes (the number of indices).
// A value of -1 for num_ell_idxes specifies that we have not seen an ellipsis yet.
// Note: The internal indices are NOT the dimensions used internally. There is a mapping to them below.
std::array<std::int64_t, number_of_letters> letter_mapping; // map letter to internal (numerical) label
letter_mapping.fill(-1);
int64_t num_ell_idxes = -1;
int64_t first_ell_idx = 0;
// The internal representation of the left hand side fo the equation (with ellipsis expanded) is stored in input_op_idxes.
// For each operand, we have a vector mapping each dimension to an internal index.
// We also keep track of the number of occurrences for each letter (to infer a right hand side if not given) and
// of the last occurence of each index.
std::vector<std::vector<int64_t>> input_op_idxes; // the parsed operand indices
std::array<std::int64_t, number_of_letters> num_letter_occurrences; // number of occurrence in the equation of this letter
num_letter_occurrences.fill(0);
std::vector<std::int64_t> last_idx_occurrence; // the last operator (left to right) using this index
if ((pos = eqn.find("->")) != std::string::npos) { // check whether we have a right hand side. in_eq is the left hand side
in_eqn = eqn.substr(0, pos);
} else {
in_eqn = eqn;
}
// remove spaces for einsum compatibility (#9929)
in_eqn.erase(std::remove_if(in_eqn.begin(), in_eqn.end(), isspace), in_eqn.end());
// next we parse in_eq (the left hand side) by iterating. It is a string of comma separated terms per index
int64_t operand = 0;
std::stringstream eqn_stream(in_eqn);
std::string term;
int64_t num_total_idxes = 0;
while (! eqn_stream.eof()) {
std::getline(eqn_stream, term, ','); // term = string with indices of current term
TORCH_CHECK((int64_t) tensors.size()>operand, "more operands in equation than tensors"); // we cannot have a longer equation than operands. We need to check here before we use the dimension
int64_t ell_char_count = 0; // handling of ellipsis '...' is a bit tedious, we count the '.'
// if there is an ellipsis, the number of dimensions it represents must be total dim - letter dimensions
int64_t candidate_num_ell_idxes = tensors[operand].dim() - term.size() + 3;
int64_t dims_in_term = 0; // dimensions we have seen
std::vector<int64_t> current_op_idxes; // mapping of operand dimensions to indices for current term
for (auto &c : term) { // c = character with a single letter or '.'
if (c == '.') {
ell_char_count++;
TORCH_CHECK(ell_char_count <= 3, "can only have '.' in one ellispis '...' in term ", operand, " of the equation");
if (ell_char_count == 3) { // this completes the ellipsis
if (num_ell_idxes == -1) { // if we have not seen an ellipsis before, keep track of indices and size
first_ell_idx = num_total_idxes;
num_ell_idxes = candidate_num_ell_idxes;
num_total_idxes += num_ell_idxes;
}
else { // we have seen an ellipsis before, so we check compatibility
TORCH_CHECK(candidate_num_ell_idxes == num_ell_idxes,
"ellipsis must represent ", num_ell_idxes, " dimensions in all terms");
}
for (int64_t i = 0; i < num_ell_idxes; ++i) { // map ellipsis dimensions in operand to indices
current_op_idxes.push_back(first_ell_idx + i);
last_idx_occurrence.push_back(operand);
}
dims_in_term += num_ell_idxes; // keep track of dimensions
}
} else { // a letter (hopefully)
TORCH_CHECK((ell_char_count == 0) || (ell_char_count == 3), "'.' must only occur in ellipsis, operand ", operand);
TORCH_CHECK(('a' <= c) && (c <= 'z'), "only lowercase letters a-z allowed as indices");
int64_t letter_num = c-'a'; // letter_num = position in letter_mapping
if (letter_mapping[letter_num] == -1) { // new letter, add internal index and mapping
letter_mapping[letter_num] = num_total_idxes;
num_total_idxes++;
last_idx_occurrence.push_back(operand);
} else { // letter we have already seen
last_idx_occurrence[letter_mapping[letter_num]] = operand;
}
num_letter_occurrences[letter_num]++;
current_op_idxes.push_back(letter_mapping[letter_num]);
dims_in_term++;
}
}
TORCH_CHECK(dims_in_term == tensors[operand].dim(), "dimension mismatch for operand ", operand, ": equation ", dims_in_term, " tensor ", tensors[operand].dim());
input_op_idxes.push_back(std::move(current_op_idxes));
operand++;
}
// in the check below, we need ==, but > is captured above, so the error message can be specific that it is <.
TORCH_CHECK((int64_t) tensors.size()==operand, "more tensors than operands in equation");
// the following parses or infers output (right hand side)
// it also assigns the idxes_to_preprocessed_dims (index -> dimension in preprocessed / output tensors)
// for the output indices. -1 means that the index has not been assigned a dimension yet
std::vector<int64_t> idxes_to_preprocessed_dims(num_total_idxes, -1); // the position of the index in the tensor dimensions
int64_t num_output_dims = 0;
if (pos != std::string::npos) { // parse the user provided right hand side
int64_t ell_char_count = 0;
for (auto &c : eqn.substr(pos+2)) {
if (c == '.') { // '.' as part of ellipsis
ell_char_count++;
TORCH_CHECK(ell_char_count <= 3, "can only have '.' in one ellispis '...' in right hand side of the equation");
if (ell_char_count == 3) { // ellipsis complete
TORCH_CHECK(num_ell_idxes >= 0, "ellipsis '...' may only appear in right hand side if it does in left hand side");
for (int64_t i = 0; i < num_ell_idxes; ++i) {
idxes_to_preprocessed_dims[first_ell_idx + i] = num_output_dims;
num_output_dims++;
}
}
} else if (! isspace(c)) { // letter (hopefully)
TORCH_CHECK((ell_char_count == 0) || (ell_char_count == 3), "'.' must only occur in ellipsis in the right hand side");
TORCH_CHECK(('a' <= c) && (c <= 'z'), "only lowercase letters a-z allowed as indices");
int64_t letter_num = c-'a';
TORCH_CHECK(idxes_to_preprocessed_dims[letter_mapping[letter_num]] == -1, "index ", c, " occurs twice in output");
idxes_to_preprocessed_dims[letter_mapping[letter_num]] = num_output_dims;
num_output_dims++;
}
}
} else { // create an inferred right hand side
// the ellipsis (if in the lhs) comes first
if (num_ell_idxes >= 0) {
for (int64_t i = 0; i < num_ell_idxes; ++i) {
idxes_to_preprocessed_dims[first_ell_idx + i] = num_output_dims;
num_output_dims++;
}
}
// then the indices that occur exactly once in alphabetic order
for (size_t idx = 0; idx < number_of_letters; idx++) {
if (num_letter_occurrences[idx] == 1) {
idxes_to_preprocessed_dims[letter_mapping[idx]] = num_output_dims;
num_output_dims++;
}
}
}
// now we assign the idxes_to_preprocessed_dims (index -> dimension in preprocessed / output tensors)
// for the non-output indices - those that are eventually summed over
int64_t position = num_output_dims;
for (int64_t i = 0; i < num_total_idxes; i++) {
if (idxes_to_preprocessed_dims[i]==-1) {
idxes_to_preprocessed_dims[i] = position;
position++;
}
}
// we now "homogenize the dimensions", i.e.
// - take diagonals for duplicated indices
// - permute the dimensions to match the order given by idxes_to_preprocessed_dims
// - unsqueeze to create all dimensions for each index in each tensor where they are missing
// we also check that sizes match
// after this, all operands will have compatible shapes (i.e. all dimensions are aligned are broadcastable)
std::vector<Tensor> preprocessed_operands;
std::vector<std::int64_t> size_of_dims(num_total_idxes, -1); // keep track of sizes for each index, -1 means we have not seen a size yet
for (int64_t op = 0; op < (int64_t) tensors.size(); op++) {
auto preprocessed_op = tensors[op];
std::vector<int64_t> idx_to_dim(num_total_idxes, -1); // the dimension which the index refers to in the original tensor, -1 means it does not appear
std::vector<int64_t>& current_op_input_idxes = input_op_idxes[op];
int64_t dim = 0; // there are two dimension indices: dim is after taking diagonals, i is in input
for (size_t i = 0; i < current_op_input_idxes.size(); i++) {
auto idx = current_op_input_idxes[i];
auto dim_out = idxes_to_preprocessed_dims[idx];
if (idx_to_dim[dim_out] == -1) { // first appearance
idx_to_dim[dim_out] = dim;
if (size_of_dims[idx] == -1) { // keep track of sizes
size_of_dims[idx] = preprocessed_op.size(dim);
}
else {
TORCH_CHECK(size_of_dims[idx] == preprocessed_op.size(dim), "size of dimension does not match previous size, operand ", op, ", dim ", i);
}
dim++;
} else { // duplicate dimension in tensor --> take diagonal of idx_to_dim[dim_out] and dim and put the diagonal dimension to idx_to_dim[dim_out]
TORCH_CHECK(size_of_dims[idx] == preprocessed_op.size(dim), "size of dimension does not match previous size, operand ", op, ", dim ", i);
preprocessed_op = preprocessed_op.diagonal(0, idx_to_dim[dim_out], dim);
// diagonal moves the diagonal dimension to the back
// now we permute the last dim back to idx_to_dim[dim_out]
std::vector<int64_t> perm(preprocessed_op.dim(), 0);
for (int64_t d = 0; d < preprocessed_op.dim(); d++) {
if (d == idx_to_dim[dim_out]) {
perm[d] = preprocessed_op.dim() - 1;
} else {
perm[d] = d - (d > idx_to_dim[dim_out]);
}
}
preprocessed_op = preprocessed_op.permute(perm);
}
}
// now we permute the dimensions in the right order
std::vector<int64_t> permutation; // permutation for this tensor
for (auto &d : idx_to_dim) {
if (d > -1) {
permutation.push_back(d);
}
}
preprocessed_op = preprocessed_op.permute(permutation);
// finally, we insert dimensions for idxes not in the operand
for (size_t dim = 0; dim < idx_to_dim.size(); dim++) {
if (idx_to_dim[dim] == -1) {
preprocessed_op = preprocessed_op.unsqueeze(dim);
}
}
preprocessed_operands.push_back(std::move(preprocessed_op));
}
// now we reduce the indices from left to right
// numpy allows to optimize the path using various
// algorithms (see eigen_path in numpy docs)
// we start with the leftmost operator and reduce indices that
// appear only there
Tensor result = std::move(preprocessed_operands[0]);
for (int64_t idx = 0; idx < num_total_idxes; idx++) {
if ((last_idx_occurrence[idx] == 0)
&& (idxes_to_preprocessed_dims[idx]>=num_output_dims)) {
result = result.sum(idxes_to_preprocessed_dims[idx], true);
}
}
// now we process each tensor using sumproduct_pair
for (int64_t i = 1; i < (int64_t) preprocessed_operands.size(); i++) {
std::vector<int64_t> sum_dims;
for (int64_t idx = 0; idx < num_total_idxes; idx++) {
if ((last_idx_occurrence[idx] == i)
&& (idxes_to_preprocessed_dims[idx]>=num_output_dims)) {
sum_dims.push_back(idxes_to_preprocessed_dims[idx]);
}
}
result = at::native::sumproduct_pair(result, std::move(preprocessed_operands[i]), sum_dims, true);
}
// finally, we squeeze out all non-result dimensions
auto sizes = result.sizes().vec();
for (int64_t dim = num_total_idxes-1; dim >= num_output_dims; dim--) {
sizes.erase(sizes.begin() + dim);
}
result = result.view(sizes);
return result;
}
// _trilinear computes a trilinear einstein sum with an unrolled dimension
// the result is `(i1.unsqueeze(expand1)*i2.unsqueeze(expand2)*i2.unsqueeze(expand3)).sum(sumdim)`
// the computation is unrolled in the unroll_dim dimension
// its main purpose is to unify the computations in bilinear and bilinear_backward
Tensor _trilinear(const Tensor& i1_, const Tensor& i2_, const Tensor& i3_,
IntArrayRef expand1_, IntArrayRef expand2_, IntArrayRef expand3_,
IntArrayRef sumdim_, int64_t unroll_dim) {
int64_t total_dim = i1_.dim()+expand1_.size();
TORCH_CHECK((unroll_dim >= 0) && (unroll_dim < total_dim), "unroll_dim must be in [0,", total_dim-1, "]");
auto expand1 = at::dim_list_to_bitset(expand1_, total_dim);
auto expand2 = at::dim_list_to_bitset(expand2_, total_dim);
auto expand3 = at::dim_list_to_bitset(expand3_, total_dim);
auto sumdim = at::dim_list_to_bitset(sumdim_, total_dim);
Tensor i1 = i1_;
Tensor i2 = i2_;
Tensor i3 = i3_;
std::vector<int64_t> output_size;
std::vector<int64_t> sum_dims_12, sum_dims_23;
int64_t unroll_size = -1;
// asserts...
for (int64_t i = 0; i < total_dim; i++) {
int64_t s = 0;
if (expand1[i]) {
i1 = i1.unsqueeze(i);
} else {
s = i1.size(i);
}
if (expand2[i]) {
i2 = i2.unsqueeze(i);
} else {
s = i2.size(i);
}
if (expand3[i]) {
i3 = i3.unsqueeze(i);
if (sumdim[i] && (i != unroll_dim))
sum_dims_12.push_back(i);
} else {
s = i3.size(i);
if (sumdim[i] && (i != unroll_dim))
sum_dims_23.push_back(i);
}
output_size.push_back(sumdim[i] ? 1 : s);
if (i == unroll_dim)
unroll_size = s;
}
int64_t slicemul1 = (expand1[unroll_dim] ? 0 : 1);
int64_t slicemul2 = (expand2[unroll_dim] ? 0 : 1);
int64_t slicemul3 = (expand3[unroll_dim] ? 0 : 1);
auto output = at::zeros(output_size, i1.options());
if (! sumdim[unroll_dim]) {
for (int64_t k = 0; k < unroll_size; k++) {
Tensor buf = at::native::sumproduct_pair(i1.narrow(unroll_dim, k * slicemul1, 1),
i2.narrow(unroll_dim, k * slicemul2, 1),
sum_dims_12, true);
buf = at::native::sumproduct_pair(buf, i3.narrow(unroll_dim, k * slicemul3, 1), sum_dims_23, true);
output.narrow(unroll_dim, k, 1).add_(buf);
}
}
else {
for (int64_t k = 0; k < unroll_size; k++) {
Tensor buf = at::native::sumproduct_pair(i1.narrow(unroll_dim, k*slicemul1, 1),
i2.narrow(unroll_dim, k*slicemul2, 1), sum_dims_12, true);
buf = at::native::sumproduct_pair(buf, i3.narrow(unroll_dim, k*slicemul3, 1), sum_dims_23, true);
output.add_(buf);
}
}
for (int64_t i = output.dim()-1; i >= 0; i--)
if (sumdim[i])
output.squeeze_(i);
return output;
}
Tensor bilinear(const Tensor& input1, const Tensor& input2, const Tensor& weight, const Tensor& bias) {
TORCH_CHECK(input1.dim() == input2.dim(), "bilinear(): input dimensions do not match: got ", input1.dim(), " and ", input2.dim());
for (int64_t i = 0; i < input1.dim() - 1; i++) {
TORCH_CHECK(input1.size(i) == input2.size(i),
"bilinear(): input batch dimensions do not match at dim ", i, ": got ", input1.size(i), " and ", input2.size(i));
}
TORCH_CHECK(input1.size(input1.dim() - 1) == weight.size(1),
"bilinear(): input1 size does not match weight size: got ",
input1.size(input1.dim() - 1), " but expected ", weight.size(1));
TORCH_CHECK(input2.size(input2.dim() - 1) == weight.size(2),
"bilinear(): input2 size does not match weight size: got ",
input2.size(input2.dim() - 1), " but expected ", weight.size(2));
TORCH_CHECK(!bias.defined() || bias.size(0) == weight.size(0),
"bilinear(): bias size does not match weight size: got ",
bias.size(0), " but expected ", weight.size(0));
std::vector<int64_t> output_size;
auto size1 = input1.sizes();
output_size.insert(output_size.end(), size1.begin(), size1.end() - 1);
output_size.push_back(weight.size(0));
auto input1_flattened = input1.view({-1, input1.size(-1)});
auto input2_flattened = input2.view({-1, input2.size(-1)});
Tensor output = at::_trilinear(input1_flattened, weight, input2_flattened, {1,3}, {0}, {1,2}, {2,3}).reshape(output_size);
if (bias.defined()) {
output = output + bias;
}
return output;
}
// implements tensordot, a matrix-multiplication-like contraction, but the dimensions given
// in the two dimension lists
Tensor tensordot(const Tensor& input1, const Tensor& input2, IntArrayRef dims1, IntArrayRef dims2) {
TORCH_CHECK(dims1.size() == dims2.size(), "both dimension lists should have same length");
int64_t csize = 1; // total size of the contracted dimensions
Tensor t1 = input1;
Tensor t2 = input2;
for (size_t i = 0; i < dims1.size(); i++) {
int s1 = input1.size(dims1[i]);
int s2 = input2.size(dims2[i]);
if (s2 == 1) { // broadcasted dimensions can be summed right away
t1 = t1.sum(dims1[i], true);
} else if (s1 == 1) {
t2 = t2.sum(dims2[i], true);
} else {
TORCH_CHECK(s1 == s2, "contracted dimensions need to match, but first has size ", s1, " in dim ", dims1[i],
" and second has size ", s2, " in dim ", dims2[i]);
csize *= s1;
}
}
auto cdims1 = at::dim_list_to_bitset(dims1, input1.dim());
auto cdims2 = at::dim_list_to_bitset(dims2, input2.dim());
std::vector<int64_t> p1, p2, rsizes; // p1, p2: input permutations, rsizes: sizes of the result
p1.reserve(input1.dim());
p2.reserve(input2.dim());
rsizes.reserve(input1.dim() + input2.dim() - (int64_t) dims1.size());
int64_t size1 = 1; // number of non-contracted elements in input1
int64_t size2 = 1; // number of non-contracted elements in input2
// fill the permutations and compute sizes
for (int64_t i = 0; i < input1.dim(); i++) {
if (! cdims1[i]) {
p1.emplace_back(i);
size1 *= t1.size(i);
rsizes.emplace_back(t1.size(i));
}
}
for (size_t i = 0; i < dims1.size(); i++) {
p1.emplace_back(dims1[i]);
}
for (size_t i = 0; i < dims2.size(); i++) {
p2.emplace_back(dims2[i]);
}
for (int64_t i = 0; i < input2.dim(); i++) {
if (! cdims2[i]) {
p2.emplace_back(i);
size2 *= t2.size(i);
rsizes.emplace_back(t2.size(i));
}
}
// permut and reshape for matrix multiplication
t1 = t1.permute(p1).reshape({size1, csize});
t2 = t2.permute(p2).reshape({csize, size2});
// multiply and reshape to target size
return at::mm(t1, t2).reshape(rsizes);
}
}} // namespace at::native