forked from openvinotoolkit/openvino_notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasync_pipeline.py
231 lines (191 loc) · 8.87 KB
/
async_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
Copyright (C) 2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import copy
import logging
import sys
import threading
import time
from collections import deque
from pathlib import Path
from typing import Dict, Set, List, Optional, Callable
import cv2
from custom_segmentation import Model
sys.path.append("../utils")
from notebook_utils import show_array
def show_live_inference(
ie, image_paths: List, model: Model, device: str, reader: Optional[Callable] = None
):
"""
Do inference of images listed in `image_paths` on `model` on the given `device` and show
the results in real time in a Jupyter Notebook
:param image_paths: List of image filenames to load
:param model: Model instance for inference
:param device: Name of device to perform inference on. For example: "CPU"
:param reader: Image reader. Should return a numpy array with image data.
If None, cv2.imread will be used, with the cv2.IMREAD_UNCHANGED flag
"""
display_handle = None
next_frame_id = 0
next_frame_id_to_show = 0
input_layer = model.net.input(0)
# Create asynchronous pipeline and print time it takes to load the model
load_start_time = time.perf_counter()
pipeline = AsyncPipeline(
ie=ie, model=model, plugin_config={}, device=device, max_num_requests=0
)
load_end_time = time.perf_counter()
# Perform asynchronous inference
start_time = time.perf_counter()
while next_frame_id < len(image_paths) - 1:
results = pipeline.get_result(next_frame_id_to_show)
if results:
# Show next result from async pipeline
result, meta = results
display_handle = show_array(result, display_handle)
next_frame_id_to_show += 1
if pipeline.is_ready():
# Submit new image to async pipeline
image_path = image_paths[next_frame_id]
if reader is None:
image = cv2.imread(filename=str(image_path), flags=cv2.IMREAD_UNCHANGED)
else:
image = reader(str(image_path))
pipeline.submit_data(
inputs={input_layer: image}, id=next_frame_id, meta={"frame": image}
)
del image
next_frame_id += 1
else:
# If the pipeline is not ready yet and there are no results: wait
pipeline.await_any()
pipeline.await_all()
# Show all frames that are in the pipeline after all images have been submitted
while pipeline.has_completed_request():
results = pipeline.get_result(next_frame_id_to_show)
if results:
result, meta = results
display_handle = show_array(result, display_handle)
next_frame_id_to_show += 1
end_time = time.perf_counter()
duration = end_time - start_time
fps = len(image_paths) / duration
print(f"Loaded model to {device} in {load_end_time-load_start_time:.2f} seconds.")
print(f"Total time for {next_frame_id} frames: {duration:.2f} seconds, fps:{fps:.2f}")
del pipeline.exec_net
del pipeline
def parse_devices(device_string):
colon_position = device_string.find(':')
if colon_position != -1:
device_type = device_string[:colon_position]
if device_type == 'HETERO' or device_type == 'MULTI':
comma_separated_devices = device_string[colon_position + 1:]
devices = comma_separated_devices.split(',')
for device in devices:
parenthesis_position = device.find(':')
if parenthesis_position != -1:
device = device[:parenthesis_position]
return devices
return (device_string,)
def parse_value_per_device(devices: Set[str], values_string: str)-> Dict[str, int]:
"""Format: <device1>:<value1>,<device2>:<value2> or just <value>"""
values_string_upper = values_string.upper()
result = {}
device_value_strings = values_string_upper.split(',')
for device_value_string in device_value_strings:
device_value_list = device_value_string.split(':')
if len(device_value_list) == 2:
if device_value_list[0] in devices:
result[device_value_list[0]] = int(device_value_list[1])
elif len(device_value_list) == 1 and device_value_list[0] != '':
for device in devices:
result[device] = int(device_value_list[0])
elif device_value_list[0] != '':
raise RuntimeError(f'Unknown string format: {values_string}')
return result
def get_user_config(flags_d: str, flags_nstreams: str, flags_nthreads: int)-> Dict[str, str]:
config = {}
devices = set(parse_devices(flags_d))
device_nstreams = parse_value_per_device(devices, flags_nstreams)
for device in devices:
if device == 'CPU': # CPU supports a few special performance-oriented keys
# limit threading for CPU portion of inference
if flags_nthreads:
config['CPU_THREADS_NUM'] = str(flags_nthreads)
config['CPU_BIND_THREAD'] = 'NO'
# for CPU execution, more throughput-oriented execution via streams
config['CPU_THROUGHPUT_STREAMS'] = str(device_nstreams[device]) \
if device in device_nstreams else 'CPU_THROUGHPUT_AUTO'
elif device == 'GPU':
config['GPU_THROUGHPUT_STREAMS'] = str(device_nstreams[device]) \
if device in device_nstreams else 'GPU_THROUGHPUT_AUTO'
if 'MULTI' in flags_d and 'CPU' in devices:
# multi-device execution with the CPU + GPU performs best with GPU throttling hint,
# which releases another CPU thread (that is otherwise used by the GPU driver for active polling)
config['GPU_PLUGIN_THROTTLE'] = '1'
return config
class AsyncPipeline:
def __init__(self, ie, model, plugin_config, device='CPU', max_num_requests=0):
cache_path = Path("model_cache")
cache_path.mkdir(exist_ok=True)
# Enable model caching for GPU devices
if "GPU" in device and "GPU" in ie.available_devices:
ie.set_property(device_name="GPU", properties={"CACHE_DIR": str(cache_path)})
self.model = model
self.logger = logging.getLogger()
self.logger.info('Loading network to {} plugin...'.format(device))
self.exec_net = ie.compile_model(self.model.net, device, plugin_config)
if max_num_requests == 0:
max_num_requests = self.exec_net.get_property('OPTIMAL_NUMBER_OF_INFER_REQUESTS') + 1
self.requests = [self.exec_net.create_infer_request() for _ in range(max_num_requests)]
self.empty_requests = deque(self.requests)
self.completed_request_results = {}
self.callback_exceptions = []
self.event = threading.Event()
def inference_completion_callback(self, callback_args):
try:
request, id, meta, preprocessing_meta = callback_args
raw_outputs = {out.any_name: copy.deepcopy(res.data) for out, res in zip(request.model_outputs, request.output_tensors)}
self.completed_request_results[id] = (raw_outputs, meta, preprocessing_meta)
self.empty_requests.append(request)
except Exception as e:
print(e)
self.callback_exceptions.append(e)
self.event.set()
def submit_data(self, inputs, id, meta):
request = self.empty_requests.popleft()
if len(self.empty_requests) == 0:
self.event.clear()
inputs, preprocessing_meta = self.model.preprocess(inputs)
request.set_callback(self.inference_completion_callback, (request, id, meta, preprocessing_meta))
request.start_async(inputs=inputs)
request.wait()
def get_raw_result(self, id):
if id in self.completed_request_results:
return self.completed_request_results.pop(id)
return None
def get_result(self, id):
result = self.get_raw_result(id)
if result:
raw_result, meta, preprocess_meta = result
return self.model.postprocess(raw_result, preprocess_meta), meta
return None
def is_ready(self):
return len(self.empty_requests) != 0
def has_completed_request(self):
return len(self.completed_request_results) != 0
def await_all(self):
for request in self.requests:
request.wait()
def await_any(self):
if len(self.empty_requests) == 0:
self.event.wait()