forked from DevilEEE/VBPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBPRMF.py
136 lines (123 loc) · 5.63 KB
/
BPRMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 18 13:14:30 2018
@author: Shinelon
"""
from VBR2016 import model
import numpy as np
import time
import copy
class BPRMF(model.model):
def __init__(self, corp, K, lambd, biasReg):
super(BPRMF, self).__init__(corp)
self.K = K
self.lambd = lambd
self.biasReg = biasReg
self.beta_item = []
self.gamma_user = [[]]
self.gamma_item = [[]]
def init(self):
self.NW = self.nItems + self.K*(self.nUsers + self.nItems)
self.W = [0.0]*self.NW
self.bestW = [0.0]*self.NW
self.getParametersFromVectors(self.W, self.beta_item, self.gamma_user, self.gamma_item, 'INIT')
return
def cleanUp(self):
self.getParametersFromVectors(self.W, self.beta_item, self.gamma_user, self.gamma_item, 'FREE')
return
def prediction(self, user, item):
return self.beta_item[item] + np.dot(self.gamma_user[user], self.gamma_item[item])
def getParametersFromVectors(self, g, beta_item, gamma_user, gamma_item, action='on'):
if action == 'FREE':
self.gamma_user = []
self.gamma_item = []
return
if action == 'INIT':
self.beta_item = g[:self.nItems]
self.gamma_user = np.random.random((self.nUsers, self.K))
self.gamma_item = np.random.random((self.nItems, self.K))
return
self.beta_item = g[:self.nItems]
g = np.array(g[self.nItems:]).reshape(self.nUsers+self.nItems, self.K)
self.gamma_user = g[:self.nUsers]
self.gamma_item = g[self.nUsers:]
return
def sampleUser(self):
while True:
user_id = np.random.randint(0, self.nUsers-1)
if len(self.pos_per_user[user_id]) == 0 or len(self.pos_per_user[user_id]) == self.nItems:
continue
return user_id
def train(self, iterations, learn_rate):
self.tostring1()
bestValidAUC = -1
best_iter = 0
for Iter in range(iterations):
clock_t = time.time()
self.oneIteration(learn_rate)
print "Iter: %d, took %f"%(Iter, time.time()-clock_t)
if Iter % 5 == 0:
self.AUC()
print "[Valid AUC = %f], Test AUC = %f, Test Std = %f\n"%(self.AUC_val, self.AUC_test, self.std)
if bestValidAUC < self.AUC_val:
bestValidAUC = self.AUC_val
best_iter = Iter
self.W = []
self.W.extend(self.beta_item)
self.W.extend(self.gamma_user.reshape(1,self.nUsers*self.K).tolist()[0])
self.W.extend(self.gamma_item.reshape(1,self.nItems*self.K).tolist()[0])
self.copyBestModel()
elif self.AUC_val < bestValidAUC and Iter > best_iter + 50:
print "Overfitting!"
break
#self.W = copy.deepcopy(self.bestW)
self.getParametersFromVectors(self.bestW, self.beta_item, self.gamma_user, self.gamma_item, action='on')
self.AUC()
self.tostring2()
return
def oneIteration(self, learn_rate):
print "oneIteration..."
userMatrix = []
for i in range(self.nUsers):
userMatrix.append([])
for u in range(self.nUsers):
for w in self.pos_per_user[u]:
userMatrix[u].append(w)
for i in range(self.num_pos_events):
if i%200 == 0:
print i
user_id = self.sampleUser()
if len(userMatrix[user_id]) == 0:
for w in self.pos_per_user[user_id]:
userMatrix[user_id].append(w)
rand_num = np.random.randint(0, len(userMatrix[user_id]))
pos_item_id = userMatrix[user_id][rand_num]
userMatrix[user_id].remove(pos_item_id)
while True:
neg_item_id = np.random.randint(0, self.nItems-1)
if not self.pos_per_user[user_id].has_key(neg_item_id):
break
self.updateFactors(user_id, pos_item_id, neg_item_id, learn_rate)
print "one iteration end!"
return
def updateFactors(self, user_id, pos_item_id, neg_item_id, learn_rate):
#print "updateFactors..."
x_uij = self.beta_item[pos_item_id] - self.beta_item[neg_item_id]
x_uij += np.dot(self.gamma_user[user_id], self.gamma_item[pos_item_id]) - np.dot(self.gamma_user[user_id], self.gamma_item[neg_item_id])
deri = 1.0/(1+np.exp(x_uij))
self.beta_item[pos_item_id] += learn_rate * (deri - self.biasReg * self.beta_item[pos_item_id])
self.beta_item[neg_item_id] += learn_rate * (-deri - self.biasReg * self.beta_item[neg_item_id])
for f in range(self.K):
w_uf = self.gamma_user[user_id][f]
h_if = self.gamma_item[pos_item_id][f]
h_jf = self.gamma_item[neg_item_id][f]
self.gamma_user[user_id][f] += learn_rate * ( deri * (h_if - h_jf) - self.lambd * w_uf)
self.gamma_item[pos_item_id][f] += learn_rate * ( deri * w_uf - self.lambd * h_if)
self.gamma_item[neg_item_id][f] += learn_rate * (-deri * w_uf - self.lambd / 10.0 * h_jf)
return
def tostring1(self):
print "BPR-MF__K_%d_lambda_%.2f_biasReg_%.2f"%(self.K, self.lambd, self.biasReg)
return
def tostring2(self):
print "<<< BPR-MF >>> Test AUC = %f, Test Std = %f\n"%(self.AUC_test, self.std)
return