-
Notifications
You must be signed in to change notification settings - Fork 7
/
TDigest.h
627 lines (517 loc) · 20.2 KB
/
TDigest.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
* Licensed to Derrick R. Burns under one or more
* contributor license agreements. See the NOTICES file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TDIGEST2_TDIGEST_H_
#define TDIGEST2_TDIGEST_H_
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <queue>
#include <utility>
#include <vector>
#include "glog/logging.h"
namespace tdigest {
using Value = double;
using Weight = double;
using Index = size_t;
const size_t kHighWater = 40000;
class Centroid {
public:
Centroid() : Centroid(0.0, 0.0) {}
Centroid(Value mean, Weight weight) : mean_(mean), weight_(weight) {}
inline Value mean() const noexcept { return mean_; }
inline Weight weight() const noexcept { return weight_; }
inline void add(const Centroid& c) {
CHECK_GT(c.weight_, 0);
if( weight_ != 0.0 ) {
weight_ += c.weight_;
mean_ += c.weight_ * (c.mean_ - mean_) / weight_;
} else {
weight_ = c.weight_;
mean_ = c.mean_;
}
}
private:
Value mean_ = 0;
Weight weight_ = 0;
};
struct CentroidList {
CentroidList(const std::vector<Centroid>& s) : iter(s.cbegin()), end(s.cend()) {}
std::vector<Centroid>::const_iterator iter;
std::vector<Centroid>::const_iterator end;
bool advance() { return ++iter != end; }
};
class CentroidListComparator {
public:
CentroidListComparator() {}
bool operator()(const CentroidList& left, const CentroidList& right) const {
return left.iter->mean() > right.iter->mean();
}
};
using CentroidListQueue = std::priority_queue<CentroidList, std::vector<CentroidList>, CentroidListComparator>;
struct CentroidComparator {
bool operator()(const Centroid& a, const Centroid& b) const { return a.mean() < b.mean(); }
};
class TDigest {
class TDigestComparator {
public:
TDigestComparator() {}
bool operator()(const TDigest* left, const TDigest* right) const { return left->totalSize() > right->totalSize(); }
};
using TDigestQueue = std::priority_queue<const TDigest*, std::vector<const TDigest*>, TDigestComparator>;
public:
TDigest() : TDigest(1000) {}
explicit TDigest(Value compression) : TDigest(compression, 0) {}
TDigest(Value compression, Index bufferSize) : TDigest(compression, bufferSize, 0) {}
TDigest(Value compression, Index unmergedSize, Index mergedSize)
: compression_(compression),
maxProcessed_(processedSize(mergedSize, compression)),
maxUnprocessed_(unprocessedSize(unmergedSize, compression)) {
processed_.reserve(maxProcessed_);
unprocessed_.reserve(maxUnprocessed_ + 1);
}
TDigest(std::vector<Centroid>&& processed, std::vector<Centroid>&& unprocessed, Value compression,
Index unmergedSize, Index mergedSize)
: TDigest(compression, unmergedSize, mergedSize) {
processed_ = std::move(processed);
unprocessed_ = std::move(unprocessed);
processedWeight_ = weight(processed_);
unprocessedWeight_ = weight(unprocessed_);
if( processed_.size() > 0 ) {
min_ = std::min(min_, processed_[0].mean());
max_ = std::max(max_, (processed_.cend() - 1)->mean());
}
updateCumulative();
}
static Weight weight(std::vector<Centroid>& centroids) noexcept {
Weight w = 0.0;
for (auto centroid : centroids) {
w += centroid.weight();
}
return w;
}
TDigest& operator=(TDigest&& o) {
compression_ = o.compression_;
maxProcessed_ = o.maxProcessed_;
maxUnprocessed_ = o.maxUnprocessed_;
processedWeight_ = o.processedWeight_;
unprocessedWeight_ = o.unprocessedWeight_;
processed_ = std::move(o.processed_);
unprocessed_ = std::move(o.unprocessed_);
cumulative_ = std::move(o.cumulative_);
min_ = o.min_;
max_ = o.max_;
return *this;
}
TDigest(TDigest&& o)
: TDigest(std::move(o.processed_), std::move(o.unprocessed_), o.compression_, o.maxUnprocessed_,
o.maxProcessed_) {}
static inline Index processedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(2 * std::ceil(compression)) : size;
}
static inline Index unprocessedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(8 * std::ceil(compression)) : size;
}
// merge in another t-digest
inline void merge(const TDigest* other) {
std::vector<const TDigest*> others{other};
add(others.cbegin(), others.cend());
}
const std::vector<Centroid>& processed() const { return processed_; }
const std::vector<Centroid>& unprocessed() const { return unprocessed_; }
Index maxUnprocessed() const { return maxUnprocessed_; }
Index maxProcessed() const { return maxProcessed_; }
inline void add(std::vector<const TDigest*> digests) { add(digests.cbegin(), digests.cend()); }
// merge in a vector of tdigests in the most efficient manner possible
// in constant space
// works for any value of kHighWater
void add(std::vector<const TDigest*>::const_iterator iter, std::vector<const TDigest*>::const_iterator end) {
if (iter != end) {
auto size = std::distance(iter, end);
TDigestQueue pq(TDigestComparator{});
for (; iter != end; iter++) {
pq.push((*iter));
}
std::vector<const TDigest*> batch;
batch.reserve(size);
size_t totalSize = 0;
while (!pq.empty()) {
auto td = pq.top();
batch.push_back(td);
pq.pop();
totalSize += td->totalSize();
if (totalSize >= kHighWater || pq.empty()) {
mergeProcessed(batch);
mergeUnprocessed(batch);
processIfNecessary();
batch.clear();
totalSize = 0;
}
}
updateCumulative();
}
}
Weight processedWeight() const { return processedWeight_; }
Weight unprocessedWeight() const { return unprocessedWeight_; }
bool haveUnprocessed() const { return unprocessed_.size() > 0; }
size_t totalSize() const { return processed_.size() + unprocessed_.size(); }
long totalWeight() const { return static_cast<long>(processedWeight_ + unprocessedWeight_); }
// return the cdf on the t-digest
Value cdf(Value x) {
if (haveUnprocessed() || isDirty()) process();
return cdfProcessed(x);
}
bool isDirty() { return processed_.size() > maxProcessed_ || unprocessed_.size() > maxUnprocessed_; }
// return the cdf on the processed values
Value cdfProcessed(Value x) const {
DLOG(INFO) << "cdf value " << x;
DLOG(INFO) << "processed size " << processed_.size();
if (processed_.size() == 0) {
// no data to examin_e
DLOG(INFO) << "no processed values";
return 0.0;
} else if (processed_.size() == 1) {
DLOG(INFO) << "one processed value "
<< " min_ " << min_ << " max_ " << max_;
// exactly one centroid, should have max_==min_
auto width = max_ - min_;
if (x < min_) {
return 0.0;
} else if (x > max_) {
return 1.0;
} else if (x - min_ <= width) {
// min_ and max_ are too close together to do any viable interpolation
return 0.5;
} else {
// interpolate if somehow we have weight > 0 and max_ != min_
return (x - min_) / (max_ - min_);
}
} else {
auto n = processed_.size();
if (x <= min_) {
DLOG(INFO) << "below min_ "
<< " min_ " << min_ << " x " << x;
return 0;
}
if (x >= max_) {
DLOG(INFO) << "above max_ "
<< " max_ " << max_ << " x " << x;
return 1;
}
// check for the left tail
if (x <= mean(0)) {
DLOG(INFO) << "left tail "
<< " min_ " << min_ << " mean(0) " << mean(0) << " x " << x;
// note that this is different than mean(0) > min_ ... this guarantees interpolation works
if (mean(0) - min_ > 0) {
return (x - min_) / (mean(0) - min_) * weight(0) / processedWeight_ / 2.0;
} else {
return 0;
}
}
// and the right tail
if (x >= mean(n - 1)) {
DLOG(INFO) << "right tail"
<< " max_ " << max_ << " mean(n - 1) " << mean(n - 1) << " x " << x;
if (max_ - mean(n - 1) > 0) {
return 1.0 - (max_ - x) / (max_ - mean(n - 1)) * weight(n - 1) / processedWeight_ / 2.0;
} else {
return 1;
}
}
CentroidComparator cc;
auto iter = std::upper_bound(processed_.cbegin(), processed_.cend(), Centroid(x, 0), cc);
auto i = std::distance(processed_.cbegin(), iter);
auto z1 = x - (iter - 1)->mean();
auto z2 = (iter)->mean() - x;
CHECK_LE(0.0, z1);
CHECK_LE(0.0, z2);
DLOG(INFO) << "middle "
<< " z1 " << z1 << " z2 " << z2 << " x " << x;
return weightedAverage(cumulative_[i - 1], z2, cumulative_[i], z1) / processedWeight_;
}
}
// this returns a quantile on the t-digest
Value quantile(Value q) {
if (haveUnprocessed() || isDirty()) process();
return quantileProcessed(q);
}
// this returns a quantile on the currently processed values without changing the t-digest
// the value will not represent the unprocessed values
Value quantileProcessed(Value q) const {
if (q < 0 || q > 1) {
LOG(ERROR) << "q should be in [0,1], got " << q;
return NAN;
}
if (processed_.size() == 0) {
// no sorted means no data, no way to get a quantile
return NAN;
} else if (processed_.size() == 1) {
// with one data point, all quantiles lead to Rome
return mean(0);
}
// we know that there are at least two sorted now
auto n = processed_.size();
// if values were stored in a sorted array, index would be the offset we are Weighterested in
const auto index = q * processedWeight_;
// at the boundaries, we return min_ or max_
if (index <= weight(0) / 2.0) {
CHECK_GT(weight(0), 0);
return min_ + 2.0 * index / weight(0) * (mean(0) - min_);
}
auto iter = std::lower_bound(cumulative_.cbegin(), cumulative_.cend(), index);
if (iter + 1 != cumulative_.cend()) {
auto i = std::distance(cumulative_.cbegin(), iter);
auto z1 = index - *(iter - 1);
auto z2 = *(iter)-index;
// LOG(INFO) << "z2 " << z2 << " index " << index << " z1 " << z1;
return weightedAverage(mean(i - 1), z2, mean(i), z1);
}
CHECK_LE(index, processedWeight_);
CHECK_GE(index, processedWeight_ - weight(n - 1) / 2.0);
auto z1 = index - processedWeight_ - weight(n - 1) / 2.0;
auto z2 = weight(n - 1) / 2 - z1;
return weightedAverage(mean(n - 1), z1, max_, z2);
}
Value compression() const { return compression_; }
void add(Value x) { add(x, 1); }
inline void compress() { process(); }
// add a single centroid to the unprocessed vector, processing previously unprocessed sorted if our limit has
// been reached.
inline bool add(Value x, Weight w) {
if (std::isnan(x)) {
return false;
}
unprocessed_.push_back(Centroid(x, w));
unprocessedWeight_ += w;
processIfNecessary();
return true;
}
inline void add(std::vector<Centroid>::const_iterator iter, std::vector<Centroid>::const_iterator end) {
while (iter != end) {
const size_t diff = std::distance(iter, end);
const size_t room = maxUnprocessed_ - unprocessed_.size();
auto mid = iter + std::min(diff, room);
while (iter != mid) unprocessed_.push_back(*(iter++));
if (unprocessed_.size() >= maxUnprocessed_) {
process();
}
}
}
private:
Value compression_;
Value min_ = std::numeric_limits<Value>::max();
Value max_ = std::numeric_limits<Value>::min();
Index maxProcessed_;
Index maxUnprocessed_;
Value processedWeight_ = 0.0;
Value unprocessedWeight_ = 0.0;
std::vector<Centroid> processed_;
std::vector<Centroid> unprocessed_;
std::vector<Weight> cumulative_;
// return mean of i-th centroid
inline Value mean(int i) const noexcept { return processed_[i].mean(); }
// return weight of i-th centroid
inline Weight weight(int i) const noexcept { return processed_[i].weight(); }
// append all unprocessed centroids into current unprocessed vector
void mergeUnprocessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = unprocessed_.size();
for (auto& td : tdigests) {
total += td->unprocessed_.size();
}
unprocessed_.reserve(total);
for (auto& td : tdigests) {
unprocessed_.insert(unprocessed_.end(), td->unprocessed_.cbegin(), td->unprocessed_.cend());
unprocessedWeight_ += td->unprocessedWeight_;
}
}
// merge all processed centroids together into a single sorted vector
void mergeProcessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = 0;
CentroidListQueue pq(CentroidListComparator{});
for (auto& td : tdigests) {
auto& sorted = td->processed_;
auto size = sorted.size();
if (size > 0) {
pq.push(CentroidList(sorted));
total += size;
processedWeight_ += td->processedWeight_;
}
}
if (total == 0) return;
if (processed_.size() > 0) {
pq.push(CentroidList(processed_));
total += processed_.size();
}
std::vector<Centroid> sorted;
LOG(INFO) << "total " << total;
sorted.reserve(total);
while (!pq.empty()) {
auto best = pq.top();
pq.pop();
sorted.push_back(*(best.iter));
if (best.advance()) pq.push(best);
}
processed_ = std::move(sorted);
if( processed_.size() > 0 ) {
min_ = std::min(min_, processed_[0].mean());
max_ = std::max(max_, (processed_.cend() - 1)->mean());
}
}
inline void processIfNecessary() {
if (isDirty()) {
process();
}
}
void updateCumulative() {
const auto n = processed_.size();
cumulative_.clear();
cumulative_.reserve(n + 1);
auto previous = 0.0;
for (Index i = 0; i < n; i++) {
auto current = weight(i);
auto halfCurrent = current / 2.0;
cumulative_.push_back(previous + halfCurrent);
previous = previous + current;
}
cumulative_.push_back(previous);
}
// merges unprocessed_ centroids and processed_ centroids together and processes them
// when complete, unprocessed_ will be empty and processed_ will have at most maxProcessed_ centroids
inline void process() {
CentroidComparator cc;
std::sort(unprocessed_.begin(), unprocessed_.end(), cc);
auto count = unprocessed_.size();
unprocessed_.insert(unprocessed_.end(), processed_.cbegin(), processed_.cend());
std::inplace_merge(unprocessed_.begin(), unprocessed_.begin() + count, unprocessed_.end(), cc);
processedWeight_ += unprocessedWeight_;
unprocessedWeight_ = 0;
processed_.clear();
processed_.push_back(unprocessed_[0]);
Weight wSoFar = unprocessed_[0].weight();
Weight wLimit = processedWeight_ * integratedQ(1.0);
auto end = unprocessed_.end();
for (auto iter = unprocessed_.cbegin() + 1; iter < end; iter++) {
auto& centroid = *iter;
Weight projectedW = wSoFar + centroid.weight();
if (projectedW <= wLimit) {
wSoFar = projectedW;
(processed_.end() - 1)->add(centroid);
} else {
auto k1 = integratedLocation(wSoFar / processedWeight_);
wLimit = processedWeight_ * integratedQ(k1 + 1.0);
wSoFar += centroid.weight();
processed_.emplace_back(centroid);
}
}
unprocessed_.clear();
min_ = std::min(min_, processed_[0].mean());
DLOG(INFO) << "new min_ " << min_;
max_ = std::max(max_, (processed_.cend() - 1)->mean());
DLOG(INFO) << "new max_ " << max_;
updateCumulative();
}
inline int checkWeights() { return checkWeights(processed_, processedWeight_); }
size_t checkWeights(const std::vector<Centroid>& sorted, Value total) {
size_t badWeight = 0;
auto k1 = 0.0;
auto q = 0.0;
for (auto iter = sorted.cbegin(); iter != sorted.cend(); iter++) {
auto w = iter->weight();
auto dq = w / total;
auto k2 = integratedLocation(q + dq);
if (k2 - k1 > 1 && w != 1) {
LOG(WARNING) << "Oversize centroid at " << std::distance(sorted.cbegin(), iter) << " k1 " << k1 << " k2 " << k2
<< " dk " << (k2 - k1) << " w " << w << " q " << q;
badWeight++;
}
if (k2 - k1 > 1.5 && w != 1) {
LOG(ERROR) << "Egregiously Oversize centroid at " << std::distance(sorted.cbegin(), iter) << " k1 " << k1
<< " k2 " << k2 << " dk " << (k2 - k1) << " w " << w << " q " << q;
badWeight++;
}
q += dq;
k1 = k2;
}
return badWeight;
}
/**
* Converts a quantile into a centroid scale value. The centroid scale is nomin_ally
* the number k of the centroid that a quantile point q should belong to. Due to
* round-offs, however, we can't align things perfectly without splitting points
* and sorted. We don't want to do that, so we have to allow for offsets.
* In the end, the criterion is that any quantile range that spans a centroid
* scale range more than one should be split across more than one centroid if
* possible. This won't be possible if the quantile range refers to a single point
* or an already existing centroid.
* <p/>
* This mapping is steep near q=0 or q=1 so each centroid there will correspond to
* less q range. Near q=0.5, the mapping is flatter so that sorted there will
* represent a larger chunk of quantiles.
*
* @param q The quantile scale value to be mapped.
* @return The centroid scale value corresponding to q.
*/
inline Value integratedLocation(Value q) const {
return compression_ * (std::asin(2.0 * q - 1.0) + M_PI / 2) / M_PI;
}
inline Value integratedQ(Value k) const {
return (std::sin(std::min(k, compression_) * M_PI / compression_ - M_PI / 2) + 1) / 2;
}
/**
* Same as {@link #weightedAverageSorted(Value, Value, Value, Value)} but flips
* the order of the variables if <code>x2</code> is greater than
* <code>x1</code>.
*/
static Value weightedAverage(Value x1, Value w1, Value x2, Value w2) {
return (x1 <= x2) ? weightedAverageSorted(x1, w1, x2, w2) : weightedAverageSorted(x2, w2, x1, w1);
}
/**
* Compute the weighted average between <code>x1</code> with a weight of
* <code>w1</code> and <code>x2</code> with a weight of <code>w2</code>.
* This expects <code>x1</code> to be less than or equal to <code>x2</code>
* and is guaranteed to return a number between <code>x1</code> and
* <code>x2</code>.
*/
static Value weightedAverageSorted(Value x1, Value w1, Value x2, Value w2) {
CHECK_LE(x1, x2);
const Value x = (x1 * w1 + x2 * w2) / (w1 + w2);
return std::max(x1, std::min(x, x2));
}
static Value interpolate(Value x, Value x0, Value x1) { return (x - x0) / (x1 - x0); }
/**
* Computes an interpolated value of a quantile that is between two sorted.
*
* Index is the quantile desired multiplied by the total number of samples - 1.
*
* @param index Denormalized quantile desired
* @param previousIndex The denormalized quantile corresponding to the center of the previous centroid.
* @param nextIndex The denormalized quantile corresponding to the center of the following centroid.
* @param previousMean The mean of the previous centroid.
* @param nextMean The mean of the following centroid.
* @return The interpolated mean.
*/
static Value quantile(Value index, Value previousIndex, Value nextIndex, Value previousMean, Value nextMean) {
const auto delta = nextIndex - previousIndex;
const auto previousWeight = (nextIndex - index) / delta;
const auto nextWeight = (index - previousIndex) / delta;
return previousMean * previousWeight + nextMean * nextWeight;
}
};
} // namespace tdigest2
#endif // TDIGEST2_TDIGEST_H_