This repository has been archived by the owner on Jan 29, 2022. It is now read-only.
forked from NudsVda/BuscaEJogos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
208 lines (168 loc) · 7.59 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
import sys
import copy
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def goalTest(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getActions(self, state):
"""
Given a state, returns available actions.
Returns a list of actions
"""
util.raiseNotDefined()
def getResult(self, state, action):
"""
Given a state and an action, returns resulting state.
"""
util.raiseNotDefined()
def getCost(self, state, action):
"""
Given a state and an action, returns step cost, which is the incremental cost
of moving to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def breadthFirstSearch(problem):
"""
Search the shallowest nodes in the search tree first.
You are not required to implement this, but you may find it useful for Q5.
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def recursive_LDS(node, problem, limit, solution, visited, border):
visited.push(node) # comeca adicionando o no na lista de visitados
if problem.goalTest(node): # verifica se o no e o objetivo
return True # se sim retorna para adicionar na lista de solucoes
elif limit == 0: # se a profundidade for zero, retorna falso
return False
else:
actions = util.Queue() # cria uma lista de acoes
for action in problem.getActions(node):
new_node = problem.getResult(node, action) #expande o no
actions.push(action) # adiciona as acoes validas na lista de acoes
border.push(new_node) # adiciona o novo no na lista de bordas
for action in actions.list:
new_node = border.pop() # retira o ultimo no
if new_node not in visited.list and new_node not in border.list: # verifica se o no esta em alguma das listas
result = recursive_LDS(new_node, problem, (limit-1), solution, visited, border) # se nao esta, faz a busca novamente
if result:
solution.push(action) # se encontrar o no, adiciona na lista de solucoes
return True
return False
# todos
def iterativeDeepeningSearch(problem):
"""
Perform DFS with increasingly larger depth.
Begin with a depth of 1 and increment depth by 1 at every step.
"""
depth = 1
while True:
visited = util.Queue()
solution = util.Queue()
border = util.Stack()
result = recursive_LDS(problem.getStartState(), problem, depth, solution, visited, border)
if result:
return solution.list
depth += 1
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
solution = [] # lista nos para solucao
node = problem.getStartState() # estado inicial
possible_solution = util.PriorityQueue() # Fila onde cada item possui uma prioridade determinada
node_cost = heuristic(node, problem) # custo inicial
visited = util.Queue() # Lista de nos ja visitados - FIFO
visited.push(node)
solution = recursive_AStar(node, problem, heuristic, possible_solution, node_cost, solution, visited)
return solution
# todos
def recursive_AStar(node, problem, heuristic, possible_solution, node_cost, solution, visited):
while True:
if problem.goalTest(node): # Verifica se o no ja e o objetivo
return solution
for action in problem.getActions(node):
new_solution = copy.copy(solution)
new_solution.append(action)
result_node = problem.getResult(node, action) # expande o no
#custo entre o no expandido + custo entre o no atual e o proximo + (custo inicial - custo atual)
action_cost = (heuristic(result_node, problem) + problem.getCost(node, action)) + (node_cost - heuristic(node, problem))
possible_solution.push((result_node, action_cost, new_solution), action_cost) # adiciona o no a lista de possiveis solucoes, o custo equivale a prioridade do item
new_solution_found = False
while not new_solution_found:
if possible_solution.isEmpty():
return False
(node, node_cost, solution) = possible_solution.pop() # passa os dados do ultimo item da pilha para as variaveis node, node_cost e solution
if node not in visited.list:
visited.push(node) # se o no ainda nao tiver sido visitado, adiciona na lista
new_solution_found = True
# Abbreviations
bfs = breadthFirstSearch
astar = aStarSearch
ids = iterativeDeepeningSearch
tms = tinyMazeSearch
# Comando Busca A*
#python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=astar,heuristic=euclideanHeuristic
# Comando Busca Iterative Deep Search
#python pacman.py -l bigMaze -z .5 -p SearchAgent -a fn=ids