This repository has been archived by the owner on Jan 29, 2022. It is now read-only.
forked from NudsVda/BuscaEJogos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multiAgents.py
291 lines (226 loc) · 12.3 KB
/
multiAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# multiAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from util import manhattanDistance
from game import Directions
import random, util
from game import Agent
# rafaela
class ReflexAgent(Agent):
"""
A reflex agent chooses an action at each choice point by examining
its alternatives via a state evaluation function.
The code below is provided as a guide. You are welcome to change
it in any way you see fit, so long as you don't touch our method
headers.
"""
def getAction(self, gameState):
"""
You do not need to change this method, but you're welcome to.
getAction chooses among the best options according to the evaluation function.
Just like in the previous project, getAction takes a GameState and returns
some Directions.X for some X in the set {North, South, West, East, Stop}
"""
# Collect legal moves and successor states
legalMoves = gameState.getLegalActions()
# Choose one of the best actions
scores = [self.evaluationFunction(gameState, action) for action in legalMoves]
bestScore = max(scores)
bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore]
chosenIndex = random.choice(bestIndices) # Pick randomly among the best
"Add more of your code here if you want to"
return legalMoves[chosenIndex]
def evaluationFunction(self, currentGameState, action):
"""
Design a better evaluation function here.
The evaluation function takes in the current and proposed successor
GameStates (pacman.py) and returns a number, where higher numbers are better.
The code below extracts some useful information from the state, like the
remaining food (newFood) and Pacman position after moving (newPos).
newScaredTimes holds the number of moves that each ghost will remain
scared because of Pacman having eaten a power pellet.
Print out these variables to see what you're getting, then combine them
to create a masterful evaluation function.
"""
# Useful information you can extract from a GameState (pacman.py)
successorGameState = currentGameState.generatePacmanSuccessor(action)
newPos = successorGameState.getPacmanPosition()
newFood = successorGameState.getFood()
newGhostStates = successorGameState.getGhostStates()
newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
"*** YOUR CODE HERE ***"
# distancia de manhattan -> distancia para chegar ao objetivo em linha reta?? de cada parte. Soma-se tudo para obter o total da distancia de manhattan
pnt = 0 # pontos que marcam distancia entre o pacman e o fantasma, alterando quando o pacman se aproxima muito do fantasma
ghost = 0
for ghost in newGhostStates:
distance = manhattanDistance(ghost.getPosition(), newPos) #calculo da distancia a posicao do fantasma e do pacman
if distance > 1:
pnt += 1
else:
pnt -= 1
for x in range(newFood.width): #largura # calculo da distancia entre o pacman e uma comida
for y in range(newFood.height): #altura
if newFood[x][y] == True: # pega uma posicao x e y e verifica se neste ponto ha comida
distance = manhattanDistance((x,y), newPos) # calculo da distancia do pacman e da comida encontrada
if distance == 0: # quer dizer que chegou na comida
pnt += 1 # soma 1 na pontuacao
else:
pnt -= 1 # diminui 1 na pontuacao
else:
pnt += 1
return pnt # retorna a quantidade de pontos conseguidos ate o termino do jogo
return successorGameState.getScore()
def scoreEvaluationFunction(currentGameState):
"""
This default evaluation function just returns the score of the state.
The score is the same one displayed in the Pacman GUI.
This evaluation function is meant for use with adversarial search agents
(not reflex agents).
"""
return currentGameState.getScore()
class MultiAgentSearchAgent(Agent):
"""
This class provides some common elements to all of your
multi-agent searchers. Any methods defined here will be available
to the MinimaxPacmanAgent & AlphaBetaPacmanAgent.
You *do not* need to make any changes here, but you can if you want to
add functionality to all your adversarial search agents. Please do not
remove anything, however.
Note: this is an abstract class: one that should not be instantiated. It's
only partially specified, and designed to be extended. Agent (game.py)
is another abstract class.
"""
def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'):
self.index = 0 # Pacman is always agent index 0
self.evaluationFunction = util.lookup(evalFn, globals())
self.depth = int(depth)
# denise
class MinimaxAgent(MultiAgentSearchAgent):
"""
Your minimax agent (question 7)
Algoritmo minimax, eh um algoritmo que determina a acao dos agentes adversarios,
O jogador Max sempre considera que o jogador Min vai escolher a jogada que o deixa na pior situacao.
A cada jogada o jogador Max procura maximizar suas chances de ganhar enquanto o jogador Min procura
minimizar as chances de isso acontecer.
"""
def min_max(self, gameState, depth): # o metodo minmax faz a verificacao do agente e a chamada da funcao referente a ele
if gameState.isWin() or gameState.isLose() or depth == self.depth * gameState.getNumAgents(): # verifica se eh o fim do jogo ou profundidade = 0
return self.evaluationFunction(gameState) # retorna
if depth % gameState.getNumAgents() == 0: # pacman / se for o pacman faz acoes max, senao faz acoes min
return self.maxValue(gameState, depth, depth % gameState.getNumAgents())
else : #fantasmas
return self.minValue(gameState, depth, depth % gameState.getNumAgents())
def maxValue(self, gameState, depth, index): # o metodo maxValue verifica o valor maximo entre o valor maximo conhecido e o da proxima acao
actions = gameState.getLegalActions(index)
max_value = -float("inf")
for action in actions:
max_value = max(max_value, self.min_max(gameState.generateSuccessor(index, action), depth+1)) # calcula qual valor maximo
return max_value
def minValue(self, gameState, depth, index): # o metodo minValue faz o contrario do maxValue
actions = gameState.getLegalActions(index)
min_value = float("inf")
for action in actions:
min_value = min(min_value, self.min_max(gameState.generateSuccessor(index, action), depth+1)) # calcula qual valor minimo
return min_value
def getAction(self, gameState):
"""
Returns the minimax action from the current gameState using self.depth
and self.evaluationFunction.
Here are some method calls that might be useful when implementing minimax.
gameState.getLegalActions(agentIndex):
Returns a list of legal actions for an agent
agentIndex=0 means Pacman, ghosts are >= 1
gameState.generateSuccessor(agentIndex, action):
Returns the successor game state after an agent takes an action
gameState.getNumAgents():
Returns the total number of agents in the game
"""
"*** YOUR CODE HERE ***"
next_action = None
actions = gameState.getLegalActions(0) # acoes possiveis para o pacman
max_value = -float("inf")
for action in actions:
value = self.min_max(gameState.generateSuccessor(0, action), 1) # um valor min ou maximo eh dado para acao
if value > max_value:
next_action = action
max_value = value
return next_action
# denise
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 8)
Diferente do minimax, o expectimax procura otimizar a escolha de acao, realizando um
o calculo de probabilidade para escolher a acao que sera realizada.
A melhor acao e calculada pela media das melhores pontuacoes das acoes
"""
def getAction(self, gameState):
"""
Returns the expectimax action using self.depth and self.evaluationFunction
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
"*** YOUR CODE HERE ***"
return self.expectimax(gameState, self.depth, 0)[1]
def expectimax(self, gameState, depth, index):
if depth == 0 or gameState.isWin() or gameState.isLose(): # verifica se eh o fim do jogo ou profundidade = 0
return (self.evaluationFunction(gameState), None) # retorna
actions = gameState.getLegalActions(index) # lista de acoes possiveis
next_index = (index + 1) % gameState.getNumAgents() # proximo agente
if index == gameState.getNumAgents() -1:
depth -= 1
score_list = {} # dicionario
for action in actions:
next_action = gameState.generateSuccessor(index, action) # proxima acao
score_list[action] = self.expectimax(next_action, depth, next_index)[0] # realiza o calculo de pontuacao para cada acao possivel
if index == 0:
best_action = max(score_list, key=score_list.get) # melhor acao no conjunto de pontuacoes
best_score = score_list[best_action] # melhor pontuacao no conjunto de pontuacoes
else:
best_action = None
best_score = 0.0
for score in score_list.values():
best_score += score
best_score = best_score / len(score_list) # media das melhores pontuacoes
return (best_score, best_action)
def betterEvaluationFunction(currentGameState):
"""
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function (question 9).
DESCRIPTION:
calculo de distancia minima entre a posicao do pacman e as comidas.
calculo de distancia minima entre a posicao pacman e a posicao dos fantasmas.
O resultado eh soma / subtracao entre as distancias dos agentes
"""
"*** YOUR CODE HERE ***"
result = 0
min_distance = 1000
is_min_distance = False
pacman_position = currentGameState.getPacmanPosition()
food_position_list = currentGameState.getFood().asList() # lista de posicionamento das comidas
ghost_position_list = currentGameState.getGhostPositions() # lista de posicionamento dos fantasmas
for food_position in food_position_list: # calcula a distancia entre o pacman e as comidas
food_distance = util.manhattanDistance(pacman_position, food_position)
if food_distance < min_distance: # determina a menor distancia
min_distance = food_distance
is_min_distance = True
if is_min_distance:
result += min_distance # soma a menor distancia ao resultado
result += 1000 * currentGameState.getNumFood()
result += 10 * len(currentGameState.getCapsules())
for ghost_position in ghost_position_list: # calcula a distancia entre o pacman e os fantasmas
ghost_distance = util.manhattanDistance(pacman_position, ghost_position)
if ghost_distance < 2:
result = float("inf")
result -= 10 * currentGameState.getScore()
return result * (-1)
# Abbreviation
better = betterEvaluationFunction