forked from crypto-agda/crypto-agda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbijection-fin.agda
507 lines (404 loc) · 20.5 KB
/
bijection-fin.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
module bijection-fin where
open import Type
open import bijection
open import Function.NP hiding (Cmp)
open import Relation.Binary.PropositionalEquality
open import Data.Empty
open import Data.Nat.NP
open import Data.Fin using (Fin ; zero ; suc ; fromℕ ; inject₁)
open import Data.Vec hiding ([_])
data `Syn : ℕ → ★ where
`id : ∀ {n} → `Syn n
`swap : ∀ {n} → `Syn (2 + n)
`tail : ∀ {n} → `Syn n → `Syn (1 + n)
_`∘_ : ∀ {n} → `Syn n → `Syn n → `Syn n
`Rep = Fin
`Ix = ℕ
`Tree : ★ → `Ix → ★
`Tree X = Vec X
`fromFun : ∀ {i X} → (`Rep i → X) → `Tree X i
`fromFun = tabulate
`toFun : ∀ {i X} → `Tree X i → (`Rep i → X)
`toFun T zero = head T
`toFun T (suc i) = `toFun (tail T) i
`toFun∘fromFun : ∀ {i X}(f : `Rep i → X) → f ≗ `toFun (`fromFun f)
`toFun∘fromFun f zero = refl
`toFun∘fromFun f (suc i) = `toFun∘fromFun (f ∘ suc) i
fin-swap : ∀ {n} → Endo (Fin (2 + n))
fin-swap zero = suc zero
fin-swap (suc zero) = zero
fin-swap (suc (suc i)) = suc (suc i)
fin-tail : ∀ {n} → Endo (Fin n) → Endo (Fin (1 + n))
fin-tail f zero = zero
fin-tail f (suc i) = suc (f i)
`evalArg : ∀ {i} → `Syn i → Endo (`Rep i)
`evalArg `id = id
`evalArg `swap = fin-swap
`evalArg (`tail f) = fin-tail (`evalArg f)
`evalArg (S `∘ S₁) = `evalArg S ∘ `evalArg S₁
vec-swap : ∀ {n}{X : ★} → Endo (Vec X (2 + n))
vec-swap xs = head (tail xs) ∷ head xs ∷ tail (tail xs)
vec-tail : ∀ {n}{X : ★} → Endo (Vec X n) → Endo (Vec X (1 + n))
vec-tail f xs = head xs ∷ f (tail xs)
`evalTree : ∀ {i X} → `Syn i → Endo (`Tree X i)
`evalTree `id = id
`evalTree `swap = vec-swap
`evalTree (`tail f) = vec-tail (`evalTree f)
`evalTree (S `∘ S₁) = `evalTree S ∘ `evalTree S₁
`eval-proof : ∀ {i X} S (T : `Tree X i) → `toFun T ≗ `toFun (`evalTree S T) ∘ `evalArg S
`eval-proof `id T i = refl
`eval-proof `swap T zero = refl
`eval-proof `swap T (suc zero) = refl
`eval-proof `swap T (suc (suc i)) = refl
`eval-proof (`tail S) T zero = refl
`eval-proof (`tail S) T (suc i) = `eval-proof S (tail T) i
`eval-proof (S `∘ S₁) T i rewrite
`eval-proof S₁ T i |
`eval-proof S (`evalTree S₁ T) (`evalArg S₁ i) = refl
`inv : ∀ {i} → Endo (`Syn i)
`inv `id = `id
`inv `swap = `swap
`inv (`tail S) = `tail (`inv S)
`inv (S `∘ S₁) = `inv S₁ `∘ `inv S
`inv-proof : ∀ {i} → (S : `Syn i) → `evalArg S ∘ `evalArg (`inv S) ≗ id
`inv-proof `id x = refl
`inv-proof `swap zero = refl
`inv-proof `swap (suc zero) = refl
`inv-proof `swap (suc (suc x)) = refl
`inv-proof (`tail S) zero = refl
`inv-proof (`tail S) (suc x) rewrite `inv-proof S x = refl
`inv-proof (S `∘ S₁) x rewrite
`inv-proof S₁ (`evalArg (`inv S) x) |
`inv-proof S x = refl
`RC : ∀ {i} → Cmp (`Rep i)
`RC zero zero = eq
`RC zero (suc j) = lt
`RC (suc i) zero = gt
`RC (suc i) (suc j) = `RC i j
insert : ∀ {n X} → Cmp X → X → Vec X n → Vec X (1 + n)
insert X-cmp x [] = x ∷ []
insert X-cmp x (x₁ ∷ xs) with X-cmp x x₁
insert X-cmp x (x₁ ∷ xs) | lt = x ∷ x₁ ∷ xs
insert X-cmp x (x₁ ∷ xs) | eq = x ∷ x₁ ∷ xs
insert X-cmp x (x₁ ∷ xs) | gt = x₁ ∷ insert X-cmp x xs
`sort : ∀ {i X} → Cmp X → Endo (`Tree X i)
`sort X-cmp [] = []
`sort X-cmp (x ∷ xs) = insert X-cmp x (`sort X-cmp xs)
insert-syn : ∀ {n X} → Cmp X → X → Vec X n → `Syn (1 + n)
insert-syn X-cmp x [] = `id
insert-syn X-cmp x (x₁ ∷ xs) with X-cmp x x₁
insert-syn X-cmp x (x₁ ∷ xs) | lt = `id
insert-syn X-cmp x (x₁ ∷ xs) | eq = `id
insert-syn X-cmp x (x₁ ∷ xs) | gt = `tail (insert-syn X-cmp x xs) `∘ `swap
`sort-syn : ∀ {i X} → Cmp X → `Tree X i → `Syn i
`sort-syn X-cmp [] = `id
`sort-syn X-cmp (x ∷ xs) = insert-syn X-cmp x (`sort X-cmp xs) `∘ `tail (`sort-syn X-cmp xs)
insert-proof : ∀ {n X}(X-cmp : Cmp X) x (T : Vec X n) → insert X-cmp x T ≡ `evalTree (insert-syn X-cmp x T) (x ∷ T)
insert-proof X-cmp x [] = refl
insert-proof X-cmp x (x₁ ∷ T) with X-cmp x x₁
insert-proof X-cmp x (x₁ ∷ T) | lt = refl
insert-proof X-cmp x (x₁ ∷ T) | eq = refl
insert-proof X-cmp x (x₁ ∷ T) | gt rewrite insert-proof X-cmp x T = refl
`sort-proof : ∀ {i X}(X-cmp : Cmp X)(T : `Tree X i) → `sort X-cmp T ≡ `evalTree (`sort-syn X-cmp T) T
`sort-proof X-cmp [] = refl
`sort-proof X-cmp (x ∷ T) rewrite
sym (`sort-proof X-cmp T)= insert-proof X-cmp x (`sort X-cmp T)
module Alt-Syn where
data ``Syn : ℕ → ★ where
`id : ∀ {n} → ``Syn n
_`∘_ : ∀ {n} → ``Syn n → ``Syn n → ``Syn n
`swap : ∀ {n} m → ``Syn (m + 2 + n)
swap-fin : ∀ {n} m → Endo (Fin (m + 2 + n))
swap-fin zero zero = suc zero
swap-fin zero (suc zero) = zero
swap-fin zero (suc (suc i)) = suc (suc i)
swap-fin (suc m) zero = zero
swap-fin (suc m) (suc i) = suc (swap-fin m i)
``evalArg : ∀ {n} → ``Syn n → Endo (`Rep n)
``evalArg `id = id
``evalArg (S `∘ S₁) = ``evalArg S ∘ ``evalArg S₁
``evalArg (`swap m) = swap-fin m
_``∘_ : ∀ {n} → ``Syn n → ``Syn n → ``Syn n
`id ``∘ y = y
(x `∘ x₁) ``∘ `id = x `∘ x₁
(x `∘ x₁) ``∘ (y `∘ y₁) = x `∘ (x₁ `∘ (y `∘ y₁))
(x `∘ x₁) ``∘ `swap m = x `∘ (x₁ ``∘ `swap m)
`swap m ``∘ y = `swap m `∘ y
``tail : ∀ {n} → ``Syn n → ``Syn (suc n)
``tail `id = `id
``tail (S `∘ S₁) = ``tail S ``∘ ``tail S₁
``tail (`swap m) = `swap (suc m)
translate : ∀ {n} → `Syn n → ``Syn n
translate `id = `id
translate `swap = `swap 0
translate (`tail S) = ``tail (translate S)
translate (S `∘ S₁) = translate S ``∘ translate S₁
``∘-p : ∀ {n}(A B : ``Syn n) → ``evalArg (A ``∘ B) ≗ ``evalArg (A `∘ B)
``∘-p `id B x = refl
``∘-p (A `∘ A₁) `id x = refl
``∘-p (A `∘ A₁) (B `∘ B₁) x = refl
``∘-p (A `∘ A₁) (`swap m) x rewrite ``∘-p A₁ (`swap m) x = refl
``∘-p (`swap m) B x = refl
``tail-p : ∀ {n} (S : ``Syn n) → fin-tail (``evalArg S) ≗ ``evalArg (``tail S)
``tail-p `id zero = refl
``tail-p `id (suc x) = refl
``tail-p (S `∘ S₁) zero rewrite ``∘-p (``tail S) (``tail S₁) zero
| sym (``tail-p S₁ zero) = ``tail-p S zero
``tail-p (S `∘ S₁) (suc x) rewrite ``∘-p (``tail S) (``tail S₁) (suc x)
| sym (``tail-p S₁ (suc x)) = ``tail-p S (suc (``evalArg S₁ x))
``tail-p (`swap m) zero = refl
``tail-p (`swap m) (suc x) = refl
`eval`` : ∀ {n} (S : `Syn n) → `evalArg S ≗ ``evalArg (translate S)
`eval`` `id x = refl
`eval`` `swap zero = refl
`eval`` `swap (suc zero) = refl
`eval`` `swap (suc (suc x)) = refl
`eval`` (`tail S) zero = ``tail-p (translate S) zero
`eval`` (`tail S) (suc x) rewrite `eval`` S x = ``tail-p (translate S) (suc x)
`eval`` (S `∘ S₁) x rewrite ``∘-p (translate S) (translate S₁) x | sym (`eval`` S₁ x) | `eval`` S (`evalArg S₁ x) = refl
data Fin-View : ∀ {n} → Fin n → ★ where
max : ∀ {n} → Fin-View (fromℕ n)
inject : ∀ {n} → (i : Fin n) → Fin-View (inject₁ i)
data _≤F_ : ∀ {n} → Fin n → Fin n → ★ where
z≤i : {n : ℕ}{i : Fin (suc n)} → zero ≤F i
s≤s : {n : ℕ}{i j : Fin n} → i ≤F j → suc i ≤F suc j
≤F-refl : ∀ {n} (x : Fin n) → x ≤F x
≤F-refl zero = z≤i
≤F-refl (suc i) = s≤s (≤F-refl i)
_<F_ : ∀ {n} → Fin n → Fin n → ★
i <F j = suc i ≤F inject₁ j
nsuc-inj : ∀ {x y} → Data.Nat.NP.suc x ≡ suc y → x ≡ y
nsuc-inj refl = refl
suc-inj : ∀ {n}{i j : Fin n} → Data.Fin.suc i ≡ suc j → i ≡ j
suc-inj refl = refl
data Sorted {X}(XC : Cmp X) : ∀ {l} → Vec X l → ★ where
[] : Sorted XC []
sing : ∀ x → Sorted XC (x ∷ [])
dbl-lt : ∀ {l} x y {xs : Vec X l} → lt ≡ XC x y → Sorted XC (y ∷ xs) → Sorted XC (x ∷ y ∷ xs)
dbl-eq : ∀ {l} x {xs : Vec X l} → Sorted XC (x ∷ xs) → Sorted XC (x ∷ x ∷ xs)
opposite : Ord → Ord
opposite lt = gt
opposite eq = eq
opposite gt = lt
flip-RC : ∀ {n}(x y : Fin n) → opposite (`RC x y) ≡ `RC y x
flip-RC zero zero = refl
flip-RC zero (suc y) = refl
flip-RC (suc x) zero = refl
flip-RC (suc x) (suc y) = flip-RC x y
eq=>≡ : ∀ {i} (x y : Fin i) → eq ≡ `RC x y → x ≡ y
eq=>≡ zero zero p = refl
eq=>≡ zero (suc y) ()
eq=>≡ (suc x) zero ()
eq=>≡ (suc x) (suc y) p rewrite eq=>≡ x y p = refl
insert-Sorted : ∀ {n l}{V : Vec (Fin n) l}(x : Fin n) → Sorted {Fin n} `RC V → Sorted {Fin n} `RC (insert `RC x V)
insert-Sorted x [] = sing x
insert-Sorted x (sing x₁) with `RC x x₁ | dbl-lt {XC = `RC} x x₁ {[]} | eq=>≡ x x₁ | flip-RC x x₁
insert-Sorted x (sing x₁) | lt | b | _ | _ = b refl (sing x₁)
insert-Sorted x (sing x₁) | eq | _ | p | _ rewrite p refl = dbl-eq x₁ (sing x₁)
insert-Sorted x (sing x₁) | gt | b | _ | l = dbl-lt x₁ x l (sing x)
insert-Sorted x (dbl-lt y y' {xs} prf xs₁) with `RC x y | dbl-lt {XC = `RC} x y {y' ∷ xs} | eq=>≡ x y | flip-RC x y
insert-Sorted x (dbl-lt y y' prf xs₁) | lt | b | p | l₁ = b refl (dbl-lt y y' prf xs₁)
insert-Sorted x (dbl-lt y y' prf xs₁) | eq | b | p | l₁ rewrite p refl = dbl-eq y (dbl-lt y y' prf xs₁)
insert-Sorted x (dbl-lt y y' {xs} prf xs₁) | gt | b | p | l₁ with `RC x y' | insert-Sorted x xs₁
insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | lt | xs' = dbl-lt y x l₁ xs'
insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | eq | xs' = dbl-lt y x l₁ xs'
insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | gt | xs' = dbl-lt y y' prf xs'
insert-Sorted x (dbl-eq y {xs} xs₁) with `RC x y | inspect (`RC x) y | dbl-lt {XC = `RC} x y {y ∷ xs} | eq=>≡ x y | flip-RC x y | insert-Sorted x xs₁
insert-Sorted x (dbl-eq y xs₁) | lt | _ | b | p | l | _ = b refl (dbl-eq y xs₁)
insert-Sorted x (dbl-eq y xs₁) | eq | _ | b | p | l | _ rewrite p refl = dbl-eq y (dbl-eq y xs₁)
insert-Sorted x (dbl-eq y xs₁) | gt | [ prf ] | b | p | l | ss rewrite prf = dbl-eq y ss
sort-Sorted : ∀ {n l}(V : Vec (Fin n) l) → Sorted `RC (`sort `RC V)
sort-Sorted [] = []
sort-Sorted (x ∷ V) = insert-Sorted x (sort-Sorted V)
RC-refl : ∀ {i}(x : Fin i) → `RC x x ≡ eq
RC-refl zero = refl
RC-refl (suc x) = RC-refl x
STail : ∀ {X l}{XC : Cmp X}{xs : Vec X (suc l)} → Sorted XC xs → Sorted XC (tail xs)
STail (sing x) = []
STail (dbl-lt x y x₁ T) = T
STail (dbl-eq x T) = T
module sproof {X}(XC : Cmp X)(XC-refl : ∀ x → XC x x ≡ eq)
(eq≡ : ∀ x y → XC x y ≡ eq → x ≡ y)
(lt-trans : ∀ x y z → XC x y ≡ lt → XC y z ≡ lt → XC x z ≡ lt)
(XC-flip : ∀ x y → opposite (XC x y) ≡ XC y x)
where
open import Data.Sum
_≤X_ : X → X → ★
x ≤X y = XC x y ≡ lt ⊎ XC x y ≡ eq
≤X-trans : ∀ {x y z} → x ≤X y → y ≤X z → x ≤X z
≤X-trans (inj₁ x₁) (inj₁ x₂) = inj₁ (lt-trans _ _ _ x₁ x₂)
≤X-trans {_}{y}{z}(inj₁ x₁) (inj₂ y₁) rewrite eq≡ y z y₁ = inj₁ x₁
≤X-trans {x}{y} (inj₂ y₁) y≤z rewrite eq≡ x y y₁ = y≤z
h≤t : ∀ {n}{T : `Tree X (2 + n)} → Sorted XC T → head T ≤X head (tail T)
h≤t (dbl-lt x y x₁ ST) = inj₁ (sym x₁)
h≤t (dbl-eq x ST) rewrite XC-refl x = inj₂ refl
head-p : ∀ {n}{T : `Tree X (suc n)} i → Sorted XC T → head T ≤X `toFun T i
head-p {T = T} zero ST rewrite XC-refl (head T) = inj₂ refl
head-p {zero} (suc ()) ST
head-p {suc n} (suc i) ST = ≤X-trans (h≤t ST) (head-p i (STail ST))
toFun-p : ∀ {n}{T : `Tree X n}{i j : Fin n} → i ≤F j → Sorted XC T → `toFun T i ≤X `toFun T j
toFun-p {j = j} z≤i ST = head-p j ST
toFun-p (s≤s i≤Fj) ST = toFun-p i≤Fj (STail ST)
sort-proof : ∀ {i}{T : `Tree X i} → Sorted XC T → Is-Mono `RC XC (`toFun T)
sort-proof {T = T} T₁ zero zero rewrite XC-refl (head T) = _
sort-proof T₁ zero (suc y) with toFun-p (z≤i {i = suc y}) T₁
sort-proof T zero (suc y) | inj₁ x rewrite x = _
sort-proof T zero (suc y) | inj₂ y₁ rewrite y₁ = _
sort-proof {T = T} T₁ (suc x) zero with toFun-p (z≤i {i = suc x}) T₁ | XC-flip (head T) (`toFun (tail T) x)
sort-proof T (suc x) zero | inj₁ x₁ | l rewrite x₁ | sym l = _
sort-proof T (suc x) zero | inj₂ y | l rewrite y | sym l = _
sort-proof T₁ (suc x) (suc y) = sort-proof (STail T₁) x y
lt-trans-RC : ∀ {i} (x y z : Fin i) → `RC x y ≡ lt → `RC y z ≡ lt → `RC x z ≡ lt
lt-trans-RC zero zero zero x<y y<z = y<z
lt-trans-RC zero zero (suc z) x<y y<z = refl
lt-trans-RC zero (suc y) zero x<y ()
lt-trans-RC zero (suc y) (suc z) x<y y<z = refl
lt-trans-RC (suc x) zero zero x<y y<z = x<y
lt-trans-RC (suc x) zero (suc z) () y<z
lt-trans-RC (suc x) (suc y) zero x<y y<z = y<z
lt-trans-RC (suc x) (suc y) (suc z) x<y y<z = lt-trans-RC x y z x<y y<z
`sort-mono : ∀ {i}(T : `Tree (`Rep i) i) → Is-Mono `RC `RC (`toFun (`sort `RC T))
`sort-mono T x y = sproof.sort-proof `RC RC-refl (λ x₁ y₁ x₂ → eq=>≡ x₁ y₁ (sym x₂)) lt-trans-RC flip-RC (sort-Sorted T) x y
module toNat n (f : Endo (Fin (suc n)))(f-inj : Is-Inj f)(f-mono : Is-Mono `RC `RC f) where
import prefect-bintree-sorting
open prefect-bintree-sorting.MM
open import Data.Sum
move-to-RC : ∀ {n}{x y : Fin n} → x ≤F y → `RC x y ≡ lt ⊎ `RC x y ≡ eq
move-to-RC {y = zero} z≤i = inj₂ refl
move-to-RC {y = suc y} z≤i = inj₁ refl
move-to-RC (s≤s x≤Fy) = move-to-RC x≤Fy
move-from-RC : ∀ {n}(x y : Fin n) → lt ≡ `RC x y ⊎ eq ≡ `RC x y → x ≤F y
move-from-RC zero zero prf = z≤i
move-from-RC zero (suc y) prf = z≤i
move-from-RC (suc x) zero (inj₁ ())
move-from-RC (suc x) zero (inj₂ ())
move-from-RC (suc x) (suc y) prf = s≤s (move-from-RC x y prf)
proper-mono : ∀ {x y} → x ≤F y → f x ≤F f y
proper-mono {x} {y} x≤Fy with `RC x y | `RC (f x) (f y) | move-to-RC x≤Fy | f-mono x y | move-from-RC (f x) (f y)
proper-mono x≤Fy | .lt | lt | inj₁ refl | r4 | r5 = r5 (inj₁ refl)
proper-mono x≤Fy | .lt | eq | inj₁ refl | r4 | r5 = r5 (inj₂ refl)
proper-mono x≤Fy | .lt | gt | inj₁ refl | () | r5
proper-mono x≤Fy | .eq | lt | inj₂ refl | () | r5
proper-mono x≤Fy | .eq | eq | inj₂ refl | r4 | r5 = r5 (inj₂ refl)
proper-mono x≤Fy | .eq | gt | inj₂ refl | () | r5
getFrom : ∀ n → ℕ → Fin (suc n)
getFrom zero i = zero
getFrom (suc n₁) zero = zero
getFrom (suc n₁) (suc i) = suc (getFrom n₁ i)
getInj : {n x y : ℕ} → x ≤ n → y ≤ n → getFrom n x ≡ getFrom n y → x ≡ y
getInj z≤n z≤n prf = refl
getInj z≤n (s≤s y≤n) ()
getInj (s≤s x≤n) z≤n ()
getInj (s≤s x≤n) (s≤s y≤n) prf rewrite (getInj x≤n y≤n (suc-inj prf)) = refl
getMono : {n x y : ℕ} → x ≤ y → y ≤ n → getFrom n x ≤F getFrom n y
getMono z≤n z≤n = ≤F-refl _
getMono z≤n (s≤s y≤n) = z≤i
getMono (s≤s x≤y) (s≤s y≤n) = s≤s (getMono x≤y y≤n)
forget : ∀ {n} → Fin n → ℕ
forget zero = zero
forget (suc i) = suc (forget i)
forgetInj : ∀ {n}{i j : Fin n} → forget i ≡ forget j → i ≡ j
forgetInj {.(suc _)} {zero} {zero} prf = refl
forgetInj {.(suc _)} {zero} {suc j} ()
forgetInj {.(suc _)} {suc i} {zero} ()
forgetInj {.(suc _)} {suc i} {suc j} prf rewrite forgetInj (nsuc-inj prf) = refl
getForget : ∀ {n}(i : Fin (suc n)) → getFrom n (forget i) ≡ i
getForget {zero} zero = refl
getForget {zero} (suc ())
getForget {suc n₁} zero = refl
getForget {suc n₁} (suc i) rewrite getForget i = refl
forget< : ∀ {n} → (i : Fin n) → forget i < n
forget< {zero} ()
forget< {suc n₁} zero = s≤s z≤n
forget< {suc n₁} (suc i) = s≤s (forget< i)
forget-mono : ∀ {n}{i j : Fin n} → i ≤F j → forget i ≤ forget j
forget-mono z≤i = z≤n
forget-mono (s≤s i≤F) = s≤s (forget-mono i≤F)
fn : Endo ℕ
fn = forget ∘ f ∘ getFrom n
return : f ≗ getFrom n ∘ fn ∘ forget
return x rewrite getForget x | getForget (f x) = refl
fn-monotone : Monotone (suc n) fn
fn-monotone {x} {y} x≤y (s≤s y≤n) = forget-mono (proper-mono (getMono x≤y y≤n))
fn-inj : IsInj (suc n) fn
fn-inj {x}{y} (s≤s sx≤sn) (s≤s sy≤sn) prf = getInj sx≤sn sy≤sn (f-inj (getFrom n x) (getFrom n y) (forgetInj prf))
fn-bounded : Bounded (suc n) fn
fn-bounded x _ = forget< (f (getFrom n x))
fn≗id : ∀ x → x < (suc n) → fn x ≡ x
fn≗id = M.is-id fn fn-monotone fn-inj fn-bounded
f≗id : f ≗ id
f≗id x rewrite return x | fn≗id (forget x) (forget< x) = getForget x
fin-view : ∀ {n} → (i : Fin (suc n)) → Fin-View i
fin-view {zero} zero = max
fin-view {zero} (suc ())
fin-view {suc n} zero = inject _
fin-view {suc n} (suc i) with fin-view i
fin-view {suc n} (suc .(fromℕ n)) | max = max
fin-view {suc n} (suc .(inject₁ i)) | inject i = inject _
absurd : {X : ★} → .⊥ → X
absurd ()
drop₁ : ∀ {n} → (i : Fin (suc n)) → .(i ≢ fromℕ n) → Fin n
drop₁ i neq with fin-view i
drop₁ {n} .(fromℕ n) neq | max = absurd (neq refl)
drop₁ .(inject₁ i) neq | inject i = i
drop₁→inject₁ : ∀ {n}(i : Fin (suc n))(j : Fin n).(p : i ≢ fromℕ n) → drop₁ i p ≡ j → i ≡ inject₁ j
drop₁→inject₁ i j p q with fin-view i
drop₁→inject₁ {n} .(fromℕ n) j p q | max = absurd (p refl)
drop₁→inject₁ .(inject₁ i) j p q | inject i = cong inject₁ q
`mono-inj→id : ∀{i}(f : Endo (`Rep i)) → Is-Inj f → Is-Mono `RC `RC f → f ≗ id
`mono-inj→id {zero} = λ f x x₁ ()
`mono-inj→id {suc i} = toNat.f≗id i
interface : Interface
interface = record
{ Ix = `Ix
; Rep = `Rep
; Syn = `Syn
; Tree = `Tree
; fromFun = `fromFun
; toFun = `toFun
; toFun∘fromFun = `toFun∘fromFun
; evalArg = `evalArg
; evalTree = `evalTree
; eval-proof = `eval-proof
; inv = `inv
; inv-proof = `inv-proof
; RC = `RC
; sort = `sort
; sort-syn = `sort-syn
; sort-proof = `sort-proof
; sort-mono = `sort-mono
; mono-inj→id = `mono-inj→id
}
open import Data.Bool.NP
count : ∀ {n} → (Fin n → ℕ) → ℕ
count {n} f = sum (tabulate f)
count-ext : ∀ {n} → (f g : Fin n → ℕ) → f ≗ g → count f ≡ count g
count-ext {zero} f g f≗g = refl
count-ext {suc n} f g f≗g rewrite f≗g zero | count-ext (f ∘ suc) (g ∘ suc) (f≗g ∘ suc) = refl
#⟨_⟩ : ∀ {n} → (Fin n → Bool) → ℕ
#⟨ f ⟩ = count (λ x → if f x then 1 else 0)
#-ext : ∀ {n} → (f g : Fin n → Bool) → f ≗ g → #⟨ f ⟩ ≡ #⟨ g ⟩
#-ext f g f≗g = count-ext (toℕ ∘ f) (toℕ ∘ g) (cong toℕ ∘ f≗g)
com-assoc : ∀ x y z → x + (y + z) ≡ y + (x + z)
com-assoc x y z rewrite
sym (ℕ°.+-assoc x y z) |
ℕ°.+-comm x y |
ℕ°.+-assoc y x z = refl
syn-pres : ∀ {n}(f : Fin n → ℕ)(S : `Syn n)
→ count f ≡ count (f ∘ `evalArg S)
syn-pres f `id = refl
syn-pres f `swap = com-assoc (f zero) (f (suc zero)) (count (λ i → f (suc (suc i))))
syn-pres f (`tail S) rewrite syn-pres (f ∘ suc) S = refl
syn-pres f (S `∘ S₁) rewrite syn-pres f S = syn-pres (f ∘ `evalArg S) S₁
count-perm : ∀ {n}(f : Fin n → ℕ)(p : Endo (Fin n)) → Is-Inj p
→ count f ≡ count (f ∘ p)
count-perm f p p-inj = trans (syn-pres f (sort-bij p)) (count-ext _ _ f∘eval≗f∘p)
where
open abs interface
f∘eval≗f∘p : f ∘ `evalArg (sort-bij p) ≗ f ∘ p
f∘eval≗f∘p x rewrite thm p p-inj x = refl
#-perm : ∀ {n}(f : Fin n → Bool)(p : Endo (Fin n)) → Is-Inj p
→ #⟨ f ⟩ ≡ #⟨ f ∘ p ⟩
#-perm f p p-inj = count-perm (toℕ ∘ f) p p-inj
test : `Syn 8
test = abs.sort-bij interface (λ x → `evalArg (`tail `swap) x)