-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_helpers.py
356 lines (300 loc) · 11.4 KB
/
plot_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import networkx as nx
import plotly.graph_objs as go
import plotly.express as px
import pandas as pd
COLOR_MAP = {
'Intern': px.colors.qualitative.Set1[3],
'Entry Level': px.colors.qualitative.Set1[2],
'Mid-Level': px.colors.qualitative.Set1[1],
'Senior-Level': px.colors.qualitative.Set1[0],
'Leadership': px.colors.qualitative.Set1[4]
}
CATEGORY_ORDER = ['Intern', 'Entry Level', 'Mid-Level', 'Senior-Level', 'Leadership']
def create_seniority_plot(jobs_per_month_by_seniority):
selected_seniority = ['Senior-Level, us', 'Senior-Level, canada',
'Entry Level, us', 'Entry Level, canada',
'Mid-Level, us', 'Mid-Level, canada',
'Intern, us', 'Intern, canada',
# 'Leadership, canada', 'Leadership, us'
]
line_style_mapping = {
'us': 'solid',
'canada': 'dashdot'
}
fig = px.line(
jobs_per_month_by_seniority,
x='year_month',
y='smoothed_value',
color='binned_seniority',
line_dash='country',
facet_col='job_category',
line_group='binned_seniority',
markers=False,
facet_col_wrap=5,
color_discrete_map=COLOR_MAP,
category_orders={
'binned_seniority': CATEGORY_ORDER
}
)
for trace in fig.data:
country_name = trace.name.split(", ")[-1]
if country_name in line_style_mapping:
trace.line.dash = line_style_mapping[country_name]
fig.add_vline(
x=pd.Timestamp("2024-06-27"),
line_width=1,
line_dash="dash",
line_color="red",
opacity = 0.8
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split('=')[1]))
fig.update_traces(marker=dict(line=dict( width=0.8, color='white')))
fig.update_layout(
legend_title='Seniority Level',
height=350,
width=1200,
legend=dict(
orientation='h',
yanchor='bottom',
y=1.10,
xanchor='center',
x=0.5
)
)
for axis in fig.layout:
if axis.startswith('xaxis'):
fig.update_layout({axis: dict(
tickangle=45,
title='Year-Month',
tickmode='linear',
dtick='M2'
)})
# if axis in ['yaxis', 'yaxis6']:
# fig.update_layout({axis: dict(
# title=f"{by.title()} Normalized Salary (USD)"
# )})
for trace in fig.data:
if trace.name in selected_seniority:
trace.visible = True
else:
trace.visible = 'legendonly'
return fig
def create_salary_plot(filtered_jobs):
selected_seniority = ['Senior-Level, us', 'Senior-Level, canada',
'Entry Level, us', 'Entry Level, canada',
'Mid-Level, us', 'Mid-Level, canada',
'Intern, us', 'Intern, canada',
# 'Leadership, canada', 'Leadership, us'
]
line_style_mapping = {
'us': 'solid',
'canada': 'dashdot'
}
fig = px.line(
filtered_jobs,
x='year_month',
y='smoothed_value',
color='binned_seniority',
line_dash='country',
facet_col='job_category',
line_group='binned_seniority',
markers=False,
facet_col_wrap=5,
color_discrete_map=COLOR_MAP,
category_orders={
'binned_seniority': CATEGORY_ORDER
}
)
for trace in fig.data:
country_name = trace.name.split(", ")[-1]
if country_name in line_style_mapping:
trace.line.dash = line_style_mapping[country_name]
fig.add_vline(
x=pd.Timestamp("2024-06-27"),
line_width=1,
line_dash="dash",
line_color="red",
opacity = 0.8
)
fig.for_each_annotation(lambda a: a.update(text=a.text.split('=')[1]))
fig.update_traces(marker=dict(line=dict( width=0.8, color='white')))
fig.update_layout(
legend_title='Seniority Level',
height=350,
width=1200,
legend=dict(
orientation='h',
yanchor='bottom',
y=1.10,
xanchor='center',
x=0.5
)
)
for axis in fig.layout:
if axis.startswith('xaxis'):
fig.update_layout({axis: dict(
tickangle=45,
title='Year-Month',
tickmode='linear',
dtick='M2'
)})
if axis in ['yaxis', 'yaxis6']:
fig.update_layout({axis: dict(
title="Normalized Salary (USD)"
)})
for trace in fig.data:
if trace.name in selected_seniority:
trace.visible = True
else:
trace.visible = 'legendonly'
return fig
def create_skill_heatmap(df, height = 600, width = 600):
tech_sums = df.drop(columns=['job_category', 'year_month', 'total_jobs']).sum().sort_values(ascending=False)
# tech_sums = df.drop(columns=['year_month', 'total_jobs']).sum().sort_values(ascending=False)
df = df[['year_month'] + tech_sums.index.tolist() + ['total_jobs']]
# treat time purely as string so plotly doesn't interpret it linearly, which widens some cells
# df['year_month'] = df['year_month'].astype(str)
df['year_month'] = pd.to_datetime(df['year_month']).dt.strftime('%B %Y')
# df['year_month'] = pd.to_datetime(df['year_month'].astype(str), format='%Y-%m')
total_jobs_per_month = df[['total_jobs', 'year_month']].drop_duplicates()
total_jobs_per_month.set_index('year_month', inplace=True)
df.set_index('year_month', inplace=True)
heatmap_data = df.drop(columns='total_jobs')
fig = px.imshow(
heatmap_data.T, # transpose the data so technologies are on the y-axis
labels=dict(x="Year-Month", y="Technology", color="Proportion"),
y=heatmap_data.columns, # technologies
x=heatmap_data.index, # year-Month
aspect="auto",
text_auto=True,
color_continuous_scale='Inferno_r',
)
# total jobs data on the secondary x-axis
fig.add_trace(
go.Scatter(
x=total_jobs_per_month.index,
# y = 0,
y=[0] * len(total_jobs_per_month), # adjust this value to position above the heatmap
text=total_jobs_per_month['total_jobs'],
mode="text",
showlegend=False,
xaxis="x2"
)
)
fig.update_layout(
height = height,
width = width,
yaxis=dict(
tickmode='linear',
tickvals=list(range(len(heatmap_data.columns))),
ticktext=heatmap_data.columns.tolist(),
nticks=len(heatmap_data.columns),
showticklabels=True,
),
xaxis=dict(
tickangle=45,
type = "category",
side = "bottom"
),
xaxis2=dict(
type = "category",
overlaying="x",
side="bottom",
showticklabels=False,
tickmode='array',
tickvals=[i for i in range(len(total_jobs_per_month.index))],
ticktext=total_jobs_per_month.index.tolist()
),
)
return fig
def create_network_graph(category, filtered_pairs, dates_for_title, layout_algo, k=20, edge_scaling_factor=0.1, normalize=True, height=600):
G = nx.Graph()
# add edges to the graph with weights as the frequency of co-occurrence
# for pair, weight in filtered_pairs.items():
# G.add_edge(pair[0], pair[1], weight=weight)
# 'filtered_pairs' is a list of {"pair": [...], "count": ...}
# add edges to the graph with weights as the frequency of co-occurrence
for item in filtered_pairs:
pair = item["pair"] # e.g., ["aws","git"]
weight = item["count"]
G.add_edge(pair[0], pair[1], weight=weight)
if normalize:
max_weight = max(nx.get_edge_attributes(G, 'weight').values()) if G.edges else 1
for edge in G.edges(data=True):
edge[2]['weight'] /= max_weight
if layout_algo == 'Spring Layout':
pos = nx.spring_layout(G, k=k)
elif layout_algo == 'Circular Layout':
pos = nx.circular_layout(G)
elif layout_algo == 'Kamada-Kawai Layout':
pos = nx.kamada_kawai_layout(G)
elif layout_algo == 'Spectral Layout':
pos = nx.spectral_layout(G)
elif layout_algo == 'Shell Layout':
pos = nx.shell_layout(G)
# create edges with color and thickness based on weight
edge_traces = []
for edge in G.edges(data=True):
node1, node2, edge_attr = edge
x0, y0 = pos[node1]
x1, y1 = pos[node2]
edge_traces.append(go.Scatter(
x=[x0, x1, None], y=[y0, y1, None],
line=dict(width=edge_attr['weight'] * edge_scaling_factor, color='black'),
hoverinfo='none',
mode='lines',
name='Edges'))
# create nodes with size based on degree
node_x = []
node_y = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=False, # keep rest of arguments in case we want this back
colorscale='YlGnBu',
reversescale=True,
color=[],
size=[],
line_width=2),
name='Nodes')
# color nodes by degree (number of connections)
node_adjacencies = []
node_text = []
for node, adjacencies in G.adjacency():
node_adjacencies.append(len(adjacencies))
node_text.append(f'{node}<br>: {len(adjacencies)}')
# size nodes based on degree
node_trace.marker.size = [1 + adjacencies * 1.5 for adjacencies in node_adjacencies]
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
# create labels as a separate trace to overlay on top
label_trace = go.Scatter(
x=node_x, y=node_y,
mode='text',
text=[f'{node}' for node in G.nodes()],
textposition="bottom center",
textfont=dict(size=12, color='black', family='Arial'),
# hoverinfo='none',
name='Labels'
)
fig = go.Figure(data=edge_traces + [node_trace, label_trace],
layout=go.Layout(
title=f'{category} - {dates_for_title}',
# titlefont_size=16,
showlegend=False,
hovermode='closest',
autosize=True,
height=height,
margin=dict(b=20, l=5, r=5, t=40),
annotations=[dict(showarrow=False, xref="paper", yref="paper")],
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
paper_bgcolor='white',
plot_bgcolor='white'))
return fig