-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathds_train_demo.py
80 lines (47 loc) · 1.75 KB
/
ds_train_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch.nn as nn
import argparse
import deepspeed
from deepspeed.accelerator import get_accelerator
from deepspeed import comm
import torch
from torch.utils.data import Dataset, DataLoader
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size).to(torch.bfloat16)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
data_size = 1024
data_length = 100
rand_loader = DataLoader(dataset=RandomDataset(data_size, data_length),
batch_size=1,
shuffle=False)
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc = nn.Linear(1024, 1, bias=False)
def forward(self, x):
x = self.fc(x)
return x
#model = MyModel().to(torch.bfloat16)
model = MyModel()
params = model.parameters()
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int, default=-1,
help='local rank passed from distributed launcher')
parser.add_argument('--deepspeed_config', type=str, default='ds_config.json',
help='path to DeepSpeed configuration file')
cmd_args = parser.parse_args()
# initialize the DeepSpeed engine
model_engine, optimizer, _, _ = deepspeed.initialize(args=cmd_args, model=model, model_parameters=params)
for step, batch in enumerate(rand_loader):
if step % 10 == 0 and comm.get_rank() == 0:
print (f'step={step}')
# forward() method
loss = model_engine(batch.to(get_accelerator().current_device_name()))
# runs backpropagation
model_engine.backward(loss)
# weight update
model_engine.step()