diff --git a/test/test_evaluate.py b/test/test_evaluate.py new file mode 100644 index 0000000..1f684f3 --- /dev/null +++ b/test/test_evaluate.py @@ -0,0 +1,156 @@ +import sys + +sys.path.append("..") +from src.scripts.evaluate import Diagnose, InferenceModel +import pytest +import torch +import numpy as np +import sbi +import os + +""" +""" + + +""" +Test the evaluate module +""" + + +@pytest.fixture +def diagnose_instance(): + return Diagnose() + + +@pytest.fixture +def inference_instance(): + inference_model = InferenceModel() + path = "../savedmodels/sbi/" + model_name = "sbi_linear" + posterior = inference_model.load_model_pkl(path, model_name) + return posterior + + +def simulator(thetas): # , percent_errors): + # convert to numpy array (if tensor): + thetas = np.atleast_2d(thetas) + # Check if the input has the correct shape + if thetas.shape[1] != 2: + raise ValueError( + "Input tensor must have shape (n, 2) \ + where n is the number of parameter sets." + ) + + # Unpack the parameters + if thetas.shape[0] == 1: + # If there's only one set of parameters, extract them directly + m, b = thetas[0, 0], thetas[0, 1] + else: + # If there are multiple sets of parameters, extract them for each row + m, b = thetas[:, 0], thetas[:, 1] + x = np.linspace(0, 100, 101) + rs = np.random.RandomState() # 2147483648)# + # I'm thinking sigma could actually be a function of x + # if we want to get fancy down the road + # Generate random noise (epsilon) based + # on a normal distribution with mean 0 and standard deviation sigma + sigma = 5 + ε = rs.normal(loc=0, scale=sigma, size=(len(x), thetas.shape[0])) + + # Initialize an empty array to store the results for each set of parameters + y = np.zeros((len(x), thetas.shape[0])) + for i in range(thetas.shape[0]): + m, b = thetas[i, 0], thetas[i, 1] + y[:, i] = m * x + b + ε[:, i] + return torch.Tensor(y.T) + + +def test_generate_sbc_samples(diagnose_instance, inference_instance): + # Mock data + low_bounds = torch.tensor([0, -10]) + high_bounds = torch.tensor([10, 10]) + + prior = sbi.utils.BoxUniform(low=low_bounds, high=high_bounds) + posterior = inference_instance # provide a mock posterior object + simulator_test = simulator # provide a mock simulator function + num_sbc_runs = 1000 + num_posterior_samples = 1000 + + # Generate SBC samples + thetas, ys, ranks, dap_samples = diagnose_instance.generate_sbc_samples( + prior, posterior, simulator_test, num_sbc_runs, num_posterior_samples + ) + + # Add assertions based on the expected behavior of the method + + +def test_run_all_sbc(diagnose_instance, inference_instance): + labels_list = ["$m$", "$b$"] + colorlist = ["#9C92A3", "#0F5257"] + low_bounds = torch.tensor([0, -10]) + high_bounds = torch.tensor([10, 10]) + + prior = sbi.utils.BoxUniform(low=low_bounds, high=high_bounds) + posterior = inference_instance # provide a mock posterior object + simulator_test = simulator # provide a mock simulator function + + save_path = "plots/" + + diagnose_instance.run_all_sbc( + prior, + posterior, + simulator_test, + labels_list, + colorlist, + num_sbc_runs=1_000, + num_posterior_samples=1_000, + samples_per_inference=1_000, + plot=False, + save=True, + path=save_path, + ) + # Check if PDF files were saved + assert os.path.exists(save_path), f"No 'plots' folder found at {save_path}" + + # List all files in the directory + files_in_directory = os.listdir(save_path) + + # Check if at least one PDF file is present + pdf_files = [file for file in files_in_directory if file.endswith(".pdf")] + assert pdf_files, "No PDF files found in the 'plots' folder" + + # We expect the pdfs to exist in the directory + expected_pdf_files = ["sbc_ranks.pdf", "sbc_ranks_cdf.pdf", "coverage.pdf"] + for expected_file in expected_pdf_files: + assert expected_file in pdf_files, \ + f"Expected PDF file '{expected_file}' not found" + + +""" +def test_sbc_statistics(diagnose_instance): + # Mock data + ranks = # provide mock ranks + thetas = # provide mock thetas + dap_samples = # provide mock dap_samples + num_posterior_samples = 1000 + + # Calculate SBC statistics + check_stats = diagnose_instance.sbc_statistics( + ranks, thetas, dap_samples, num_posterior_samples + ) + + # Add assertions based on the expected behavior of the method + +def test_plot_1d_ranks(diagnose_instance): + # Mock data + ranks = # provide mock ranks + num_posterior_samples = 1000 + labels_list = # provide mock labels_list + colorlist = # provide mock colorlist + + # Plot 1D ranks + diagnose_instance.plot_1d_ranks( + ranks, num_posterior_samples, labels_list, + colorlist, plot=False, save=False + ) +"""