why the precision of the LiSi example is very low? #1403
Unanswered
sunlight905
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I test the example LiSi https://zhuanlan.zhihu.com/p/555628454, all the parameters is unchanged, but when the training complete, the precision is very low?
Could you give me some advice?
Thanks!
2023-11-07 19:41:16,655 - INFO : system 000 candidate : 228 in 20100 1.13 %
2023-11-07 19:41:16,655 - INFO : system 000 failed : 19352 in 20100 96.28 %
2023-11-07 19:41:16,655 - INFO : system 000 accurate : 520 in 20100 2.59 %
2023-11-07 19:41:16,664 - INFO : system 000 accurate_ratio: 0.0259 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
2023-11-08 03:51:02,648 - INFO : system 000 candidate : 516 in 20100 2.57 %
2023-11-08 03:51:02,648 - INFO : system 000 failed : 18523 in 20100 92.15 %
2023-11-08 03:51:02,648 - INFO : system 000 accurate : 1061 in 20100 5.28 %
2023-11-08 03:51:02,656 - INFO : system 000 accurate_ratio: 0.0528 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
2023-11-08 13:47:30,097 - INFO : system 000 candidate : 525 in 30100 1.74 %
2023-11-08 13:47:30,097 - INFO : system 000 failed : 28498 in 30100 94.68 %
2023-11-08 13:47:30,097 - INFO : system 000 accurate : 1077 in 30100 3.58 %
2023-11-08 13:47:30,110 - INFO : system 000 accurate_ratio: 0.0358 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
2023-11-08 23:13:54,374 - INFO : system 000 candidate : 853 in 30100 2.83 %
2023-11-08 23:13:54,374 - INFO : system 000 failed : 27764 in 30100 92.24 %
2023-11-08 23:13:54,374 - INFO : system 000 accurate : 1483 in 30100 4.93 %
2023-11-08 23:13:54,387 - INFO : system 000 accurate_ratio: 0.0493 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
2023-11-09 10:07:28,022 - INFO : system 000 candidate : 691 in 25100 2.75 %
2023-11-09 10:07:28,022 - INFO : system 000 failed : 23258 in 25100 92.66 %
2023-11-09 10:07:28,022 - INFO : system 000 accurate : 1151 in 25100 4.59 %
2023-11-09 10:07:28,033 - INFO : system 000 accurate_ratio: 0.0459 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
2023-11-09 23:50:19,391 - INFO : system 000 candidate : 1567 in 40100 3.91 %
2023-11-09 23:50:19,391 - INFO : system 000 failed : 36697 in 40100 91.51 %
2023-11-09 23:50:19,391 - INFO : system 000 accurate : 1836 in 40100 4.58 %
2023-11-09 23:50:19,408 - INFO : system 000 accurate_ratio: 0.0458 thresholds: 0.9970 and 0.9990 eff. task min and max -1 50 number of fp tasks: 50
`{
"type_map": ["Li", "Si"],
"mass_map": [6.9, 28.1],
"init_data_prefix": "",
"init_data_sys": [
"POSCAR_LiSi.01x01x01/02.md/sys-0016-0016/deepmd"
],
"sys_configs_prefix": "",
"sys_configs": [
["POSCAR_LiSi.01x01x01/02.md/sys-0016-0016/scale-1.000/00000[0-2]/POSCAR"]
],
} `
Beta Was this translation helpful? Give feedback.
All reactions