diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 3f43b6975..8da028de5 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -21,7 +21,7 @@ repos: # Python - repo: https://github.com/astral-sh/ruff-pre-commit # Ruff version. - rev: v0.6.3 + rev: v0.6.5 hooks: - id: ruff args: ["--fix"] diff --git a/docs/plugin.md b/docs/plugin.md index 44e8eabf7..bf3266d54 100644 --- a/docs/plugin.md +++ b/docs/plugin.md @@ -1,7 +1,7 @@ # Plugins One can follow a simple example under `plugin_example/` directory to add their own format by creating and installing plugins. -It's critical to add the :class:`Format` class to `entry_points['dpdata.plugins']` in `pyproject.toml`: +It's critical to add the {class}`Format ` class to `entry_points['dpdata.plugins']` in `pyproject.toml`: ```toml [project.entry-points.'dpdata.plugins'] diff --git a/docs/systems/bond_order_system.md b/docs/systems/bond_order_system.md index 443120a76..8d92d7249 100644 --- a/docs/systems/bond_order_system.md +++ b/docs/systems/bond_order_system.md @@ -1,6 +1,6 @@ ## BondOrderSystem -A new class :class:`BondOrderSystem` which inherits from class :class:`System` is introduced in dpdata. This new class contains information of chemical bonds and formal charges (stored in `BondOrderSystem.data['bonds']`, `BondOrderSystem.data['formal_charges']`). Now BondOrderSystem can only read from .mol/.sdf formats, because of its dependency on rdkit (which means rdkit must be installed if you want to use this function). Other formats, such as pdb, must be converted to .mol/.sdf format (maybe with software like open babel). +A new class {class}`BondOrderSystem ` which inherits from class {class}`System ` is introduced in dpdata. This new class contains information of chemical bonds and formal charges (stored in `BondOrderSystem.data['bonds']`, `BondOrderSystem.data['formal_charges']`). Now BondOrderSystem can only read from .mol/.sdf formats, because of its dependency on rdkit (which means rdkit must be installed if you want to use this function). Other formats, such as pdb, must be converted to .mol/.sdf format (maybe with software like open babel). ```python import dpdata @@ -12,7 +12,7 @@ system_2 = dpdata.BondOrderSystem( ) # read from .sdf file ``` In sdf file, all molecules must be of the same topology (i.e. conformers of the same molecular configuration). -`BondOrderSystem` also supports initialize from a :class:`rdkit.Chem.rdchem.Mol` object directly. +`BondOrderSystem ` also supports initialize from a {class}`rdkit.Chem.rdchem.Mol` object directly. ```python from rdkit import Chem from rdkit.Chem import AllChem @@ -25,7 +25,7 @@ system = dpdata.BondOrderSystem(rdkit_mol=mol) ``` ### Bond Order Assignment -The :class:`BondOrderSystem` implements a more robust sanitize procedure for rdkit Mol, as defined in :class:`dpdata.rdkit.santizie.Sanitizer`. This class defines 3 level of sanitization process by: low, medium and high. (default is medium). +The {class}`BondOrderSystem ` implements a more robust sanitize procedure for rdkit Mol, as defined in {class}`dpdata.rdkit.santizie.Sanitizer`. This class defines 3 level of sanitization process by: low, medium and high. (default is medium). + low: use `rdkit.Chem.SanitizeMol()` function to sanitize molecule. + medium: before using rdkit, the programm will first assign formal charge of each atom to avoid inappropriate valence exceptions. However, this mode requires the rightness of the bond order information in the given molecule. + high: the program will try to fix inappropriate bond orders in aromatic hetreocycles, phosphate, sulfate, carboxyl, nitro, nitrine, guanidine groups. If this procedure fails to sanitize the given molecule, the program will then try to call `obabel` to pre-process the mol and repeat the sanitization procedure. **That is to say, if you wan't to use this level of sanitization, please ensure `obabel` is installed in the environment.** diff --git a/docs/systems/mixed.md b/docs/systems/mixed.md index 69bf80ea8..25837ea6e 100644 --- a/docs/systems/mixed.md +++ b/docs/systems/mixed.md @@ -1,6 +1,6 @@ # Mixed Type Format -The format `deepmd/npy/mixed` is the mixed type numpy format for DeePMD-kit, and can be loaded or dumped through class :class:`dpdata.MultiSystems`. +The format `deepmd/npy/mixed` is the mixed type numpy format for DeePMD-kit, and can be loaded or dumped through class {class}`dpdata.MultiSystems`. Under this format, systems with the same number of atoms but different formula can be put together for a larger system, especially when the frame numbers in systems are sparse. diff --git a/docs/systems/multi.md b/docs/systems/multi.md index 8e47acf70..20551c7e8 100644 --- a/docs/systems/multi.md +++ b/docs/systems/multi.md @@ -1,15 +1,15 @@ # `MultiSystems` -The Class :class:`dpdata.MultiSystems` can read data from a dir which may contains many files of different systems, or from single xyz file which contains different systems. +The Class {class}`dpdata.MultiSystems` can read data from a dir which may contains many files of different systems, or from single xyz file which contains different systems. -Use :meth:`dpdata.MultiSystems.from_dir` to read from a directory, :class:`dpdata.MultiSystems` will walk in the directory -Recursively and find all file with specific file_name. Supports all the file formats that :class:`dpdata.LabeledSystem` supports. +Use {meth}`dpdata.MultiSystems.from_dir` to read from a directory, {class}`dpdata.MultiSystems` will walk in the directory +Recursively and find all file with specific file_name. Supports all the file formats that {class}`dpdata.LabeledSystem` supports. -Use :meth:`dpdata.MultiSystems.from_file` to read from single file. Single-file support is available for the `quip/gap/xyz` and `ase/structure` formats. +Use {meth}`dpdata.MultiSystems.from_file` to read from single file. Single-file support is available for the `quip/gap/xyz` and `ase/structure` formats. For example, for `quip/gap xyz` files, single .xyz file may contain many different configurations with different atom numbers and atom type. -The following commands relating to :class:`dpdata.MultiSystems` may be useful. +The following commands relating to {class}`dpdata.MultiSystems` may be useful. ```python # load data diff --git a/docs/systems/system.md b/docs/systems/system.md index 0401a3110..9f01fc40f 100644 --- a/docs/systems/system.md +++ b/docs/systems/system.md @@ -19,21 +19,21 @@ or let dpdata infer the format (`vasp/poscar`) of the file from the file name ex ```python d_poscar = dpdata.System("my.POSCAR") ``` -The number of atoms, atom types, coordinates are loaded from the `POSCAR` and stored to a data :class:`System` called `d_poscar`. -A data :class:`System` (a concept used by [deepmd-kit](https://github.com/deepmodeling/deepmd-kit)) contains frames that has the same number of atoms of the same type. The order of the atoms should be consistent among the frames in one :class:`System`. +The number of atoms, atom types, coordinates are loaded from the `POSCAR` and stored to a data {class}`System ` called `d_poscar`. +A data {class}`System ` (a concept used by [deepmd-kit](https://github.com/deepmodeling/deepmd-kit)) contains frames that has the same number of atoms of the same type. The order of the atoms should be consistent among the frames in one {class}`System `. It is noted that `POSCAR` only contains one frame. If the multiple frames stored in, for example, a `OUTCAR` is wanted, ```python d_outcar = dpdata.LabeledSystem("OUTCAR") ``` -The labels provided in the `OUTCAR`, i.e. energies, forces and virials (if any), are loaded by :class:`LabeledSystem`. It is noted that the forces of atoms are always assumed to exist. :class:`LabeledSystem` is a derived class of :class:`System`. +The labels provided in the `OUTCAR`, i.e. energies, forces and virials (if any), are loaded by {class}`LabeledSystem `. It is noted that the forces of atoms are always assumed to exist. {class}`LabeledSystem ` is a derived class of {class}`System `. -The :class:`System` or :class:`LabeledSystem` can be constructed from the following file formats with the `format key` in the table passed to argument `fmt`: +The {class}`System ` or {class}`LabeledSystem ` can be constructed from the [supported file formats](../formats.rst) with the `format key` in the table passed to argument `fmt`. ### Access data -These properties stored in :class:`System` and :class:`LabeledSystem` can be accessed by operator `[]` with the key of the property supplied, for example +These properties stored in {class}`System ` and {class}`LabeledSystem ` can be accessed by operator `[]` with the key of the property supplied, for example ```python coords = d_outcar["coords"] ``` @@ -52,7 +52,7 @@ Available properties are (nframe: number of frames in the system, natoms: total ### Dump data -The data stored in :class:`System` or :class:`LabeledSystem` can be dumped in 'lammps/lmp' or 'vasp/poscar' format, for example: +The data stored in {class}`System ` or {class}`LabeledSystem ` can be dumped in 'lammps/lmp' or 'vasp/poscar' format, for example: ```python d_outcar.to("lammps/lmp", "conf.lmp", frame_idx=0) ``` diff --git a/dpdata/abacus/md.py b/dpdata/abacus/md.py index 9e0a416a0..bbb023439 100644 --- a/dpdata/abacus/md.py +++ b/dpdata/abacus/md.py @@ -12,6 +12,7 @@ get_cell, get_coords, get_geometry_in, + get_mag_force, kbar2evperang3, ) @@ -199,6 +200,9 @@ def get_frame(fname): stress[iframe] *= np.linalg.det(cells[iframe, :, :].reshape([3, 3])) if np.sum(np.abs(stress[0])) < 1e-10: stress = None + + magmom, magforce = get_mag_force(outlines) + data = {} data["atom_names"] = atom_names data["atom_numbs"] = natoms @@ -213,5 +217,9 @@ def get_frame(fname): if not isinstance(data["virials"], np.ndarray): del data["virials"] data["orig"] = np.zeros(3) + if len(magmom) > 0: + data["spins"] = magmom + if len(magforce) > 0: + data["mag_forces"] = magforce return data diff --git a/dpdata/abacus/relax.py b/dpdata/abacus/relax.py index 7a4abf357..be80bc90a 100644 --- a/dpdata/abacus/relax.py +++ b/dpdata/abacus/relax.py @@ -13,6 +13,7 @@ get_cell, get_coords, get_geometry_in, + get_mag_force, kbar2evperang3, ) @@ -198,6 +199,8 @@ def get_frame(fname): lines, atomnumber ) + magmom, magforce = get_mag_force(lines) + data = {} data["atom_names"] = atom_names data["atom_numbs"] = natoms @@ -211,4 +214,9 @@ def get_frame(fname): data["stress"] = stress data["orig"] = np.zeros(3) + if len(magmom) > 0: + data["spins"] = magmom + if len(magforce) > 0: + data["mag_forces"] = magforce + return data diff --git a/dpdata/abacus/scf.py b/dpdata/abacus/scf.py index 93e3d6e15..9919e9128 100644 --- a/dpdata/abacus/scf.py +++ b/dpdata/abacus/scf.py @@ -112,6 +112,152 @@ def get_cell(geometry_inlines): return celldm, cell +def parse_stru_pos(pos_line): + """Parses a line from the atom position block in a structure file. + + The content in atom position block can include: + - `m` or NO key word: Three numbers (0 or 1) controlling atom movement in geometry relaxation calculations. + - `v`, `vel`, or `velocity`: Three components of initial velocity of atoms in geometry relaxation calculations. + - `mag` or `magmom`: Start magnetization for each atom. Can be one number (colinear) or three numbers (non-colinear). + - `angle1`: In non-colinear case, angle between c-axis and real spin (in degrees). + - `angle2`: In non-colinear case, angle between a-axis and real spin projection in ab-plane (in degrees). + - `cs` or `constrain`: Three numbers (0 or 1) controlling the spin constraint of the atom. + - `lambda`: Three numbers controlling the lambda of the atom. + + Parameters + ---------- + pos_line : A line from the atom position block. + + Returns + ------- + tuple: A tuple containing: + - pos (list of float): The position coordinates. + - move (list of int or None): Movement control values. + - velocity (list of float or None): Initial velocity components. + - magmom (float, list of float, or None): Magnetization values. + - angle1 (float or None): Angle1 value. + - angle2 (float or None): Angle2 value. + - constrain (list of bool or None): Spin constraint values. + - lambda1 (float, list of float, or None): Lambda values. + + e.g.: + ``` + Fe + 1.0 + 2 + 0.0 0.0 0.0 m 0 0 0 mag 1.0 angle1 90 angle2 0 cs 0 0 0 + 0.5 0.5 0.5 m 1 1 1 mag 1.0 angle1 90 angle2 180 + ``` + """ + pos_line = pos_line.split("#")[0] # remove comments + sline = pos_line.split() + pos = [float(i) for i in sline[:3]] + move = None + velocity = None + magmom = None + angle1 = None + angle2 = None + constrain = None + lambda1 = None + if len(sline) > 3: + mag_list = None + velocity_list = None + move_list = [] + angle1_list = None + angle2_list = None + constrain_list = None + lambda_list = None + label = "move" + for i in range(3, len(sline)): + # firstly read the label + if sline[i] == "m": + label = "move" + elif sline[i] in ["v", "vel", "velocity"]: + label = "velocity" + velocity_list = [] + elif sline[i] in ["mag", "magmom"]: + label = "magmom" + mag_list = [] + elif sline[i] == "angle1": + label = "angle1" + angle1_list = [] + elif sline[i] == "angle2": + label = "angle2" + angle2_list = [] + elif sline[i] in ["constrain", "sc"]: + label = "constrain" + constrain_list = [] + elif sline[i] in ["lambda"]: + label = "lambda" + lambda_list = [] + + # the read the value to the list + elif label == "move": + move_list.append(int(sline[i])) + elif label == "velocity": + velocity_list.append(float(sline[i])) + elif label == "magmom": + mag_list.append(float(sline[i])) + elif label == "angle1": + angle1_list.append(float(sline[i])) + elif label == "angle2": + angle2_list.append(float(sline[i])) + elif label == "constrain": + constrain_list.append(bool(int(sline[i]))) + elif label == "lambda": + lambda_list.append(float(sline[i])) + + if move_list is not None and len(move_list) > 0: + if len(move_list) == 3: + move = move_list + else: + raise RuntimeError(f"Invalid setting of move: {pos_line}") + + if velocity_list is not None: + if len(velocity_list) == 3: + velocity = velocity_list + else: + raise RuntimeError(f"Invalid setting of velocity: {pos_line}") + + if mag_list is not None: + if len(mag_list) == 3: + magmom = mag_list + elif len(mag_list) == 1: + magmom = mag_list[0] + else: + raise RuntimeError(f"Invalid magnetic moment {pos_line}") + + if angle1_list is not None: + if len(angle1_list) == 1: + angle1 = angle1_list[0] + else: + raise RuntimeError(f"Invalid angle1 {pos_line}") + + if angle2_list is not None: + if len(angle2_list) == 1: + angle2 = angle2_list[0] + else: + raise RuntimeError(f"Invalid angle2 {pos_line}") + + if constrain_list is not None: + if len(constrain_list) == 3: + constrain = constrain_list + elif len(constrain_list) == 1: + constrain = constrain_list[0] + else: + raise RuntimeError(f"Invalid constrain {pos_line}") + + if lambda_list is not None: + if len(lambda_list) == 3: + lambda1 = lambda_list + elif len(lambda_list) == 1: + lambda1 = lambda_list[0] + else: + raise RuntimeError(f"Invalid lambda {pos_line}") + + return pos, move, velocity, magmom, angle1, angle2, constrain, lambda1 + + def get_coords(celldm, cell, geometry_inlines, inlines=None): coords_lines = get_stru_block(geometry_inlines, "ATOMIC_POSITIONS") # assuming that ATOMIC_POSITIONS is at the bottom of the STRU file @@ -120,6 +266,14 @@ def get_coords(celldm, cell, geometry_inlines, inlines=None): atom_types = [] # index of atom_names of each atom in the geometry atom_numbs = [] # of atoms for each element coords = [] # coordinations of atoms + move = [] # move flag of each atom + velocity = [] # velocity of each atom + mag = [] # magnetic moment of each atom + angle1 = [] # angle1 of each atom + angle2 = [] # angle2 of each atom + sc = [] # spin constraint flag of each atom + lambda_ = [] # lambda of each atom + ntype = get_nele_from_stru(geometry_inlines) line_idx = 1 # starting line of first element for it in range(ntype): @@ -128,7 +282,10 @@ def get_coords(celldm, cell, geometry_inlines, inlines=None): atom_numbs.append(int(coords_lines[line_idx].split()[0])) line_idx += 1 for iline in range(atom_numbs[it]): - xyz = np.array([float(xx) for xx in coords_lines[line_idx].split()[0:3]]) + pos, imove, ivelocity, imagmom, iangle1, iangle2, iconstrain, ilambda1 = ( + parse_stru_pos(coords_lines[line_idx]) + ) + xyz = np.array(pos) if coord_type == "cartesian": xyz = xyz * celldm elif coord_type == "direct": @@ -141,6 +298,15 @@ def get_coords(celldm, cell, geometry_inlines, inlines=None): ) coords.append(xyz) atom_types.append(it) + + move.append(imove) + velocity.append(ivelocity) + mag.append(imagmom) + angle1.append(iangle1) + angle2.append(iangle2) + sc.append(iconstrain) + lambda_.append(ilambda1) + line_idx += 1 coords = np.array(coords) # need transformation!!! atom_types = np.array(atom_types) @@ -234,15 +400,57 @@ def get_stress(outlines): return np.array(stress[-1]) * kbar2evperang3 # only return the last stress +def get_mag_force(outlines): + """Read atomic magmom and magnetic force from OUT.ABACUS/running_scf.log. + + Returns + ------- + magmom: list of list of atomic magnetic moments (three dimensions: ION_STEP * NATOMS * 1/3) + magforce: list of list of atomic magnetic forces (three dimensions: ION_STEP * NATOMS * 1/3) + e.g.: + ------------------------------------------------------------------------------------------- + Total Magnetism (uB) + ------------------------------------------------------------------------------------------- + Fe 0.0000000001 0.0000000000 3.0000000307 + Fe -0.0000000000 -0.0000000000 3.0000001151 + ------------------------------------------------------------------------------------------- + ------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) + ------------------------------------------------------------------------------------------- + Fe 0.0000000000 0.0000000000 -1.2117698671 + Fe 0.0000000000 0.0000000000 -1.2117928796 + ------------------------------------------------------------------------------------------- + + """ + mags = [] + magforces = [] + for i, line in enumerate(outlines): + if "Total Magnetism (uB)" in line: + j = i + 2 + mag = [] + while "-------------------------" not in outlines[j]: + mag.append([float(ii) for ii in outlines[j].split()[1:]]) + j += 1 + mags.append(mag) + if "Magnetic force (eV/uB)" in line: + j = i + 2 + magforce = [] + while "-------------------------" not in outlines[j]: + magforce.append([float(ii) for ii in outlines[j].split()[1:]]) + j += 1 + magforces.append(magforce) + return np.array(mags), np.array(magforces) + + def get_frame(fname): data = { "atom_names": [], "atom_numbs": [], "atom_types": [], - "cells": [], - "coords": [], - "energies": [], - "forces": [], + "cells": np.array([]), + "coords": np.array([]), + "energies": np.array([]), + "forces": np.array([]), } if isinstance(fname, str): @@ -272,6 +480,12 @@ def get_frame(fname): atom_names, natoms, types, coords = get_coords( celldm, cell, geometry_inlines, inlines ) + magmom, magforce = get_mag_force(outlines) + if len(magmom) > 0: + magmom = magmom[-1:] + if len(magforce) > 0: + magforce = magforce[-1:] + data["atom_names"] = atom_names data["atom_numbs"] = natoms data["atom_types"] = types @@ -291,6 +505,11 @@ def get_frame(fname): if stress is not None: data["virials"] = stress[np.newaxis, :, :] data["orig"] = np.zeros(3) + + if len(magmom) > 0: + data["spins"] = magmom + if len(magforce) > 0: + data["mag_forces"] = magforce # print("atom_names = ", data['atom_names']) # print("natoms = ", data['atom_numbs']) # print("types = ", data['atom_types']) @@ -313,12 +532,9 @@ def get_nele_from_stru(geometry_inlines): ] keyword_sequence = [] keyword_line_index = [] - atom_names = [] - atom_numbs = [] for iline, line in enumerate(geometry_inlines): if line.split() == []: continue - have_key_word = False for keyword in key_words_list: if keyword in line and keyword == line.split()[0]: keyword_sequence.append(keyword) @@ -343,7 +559,7 @@ def get_frame_from_stru(fname): with open_file(fname) as fp: geometry_inlines = fp.read().split("\n") nele = get_nele_from_stru(geometry_inlines) - inlines = ["ntype %d" % nele] + inlines = [f"ntype {nele}"] celldm, cell = get_cell(geometry_inlines) atom_names, natoms, types, coords = get_coords( celldm, cell, geometry_inlines, inlines @@ -366,32 +582,180 @@ def make_unlabeled_stru( numerical_orbital=None, numerical_descriptor=None, mass=None, + move=None, + velocity=None, + mag=None, + angle1=None, + angle2=None, + sc=None, + lambda_=None, + link_file=False, + dest_dir=None, + **kwargs, ): + """Make an unlabeled STRU file from a dictionary. + + Parameters + ---------- + data : dict + System data + frame_idx : int + The index of the frame to dump + pp_file : list of string or dict, optional + List of pseudo potential files, or a dictionary of pseudo potential files for each atomnames + numerical_orbital : list of string or dict, optional + List of orbital files, or a dictionary of orbital files for each atomnames + numerical_descriptor : str, optional + numerical descriptor file + mass : list of float, optional + List of atomic masses + move : list of list of bool, optional + List of the move flag of each xyz direction of each atom + velocity : list of list of float, optional + List of the velocity of each xyz direction of each atom + mag : list of (list of float or float), optional + List of the magnetic moment of each atom, can be a list of three floats or one float + For noncollinear, three floats are the xyz component of the magnetic moment. + For collinear, one float is the norm of the magnetic moment. + angle1 : list of float, optional + List of the angle1 of each atom. For noncollinear calculation, it is the angle between the magnetic moment and the z-axis. + angle2 : list of float, optional + List of the angle2 of each atom. For noncollinear calculation, it is the angle between the projection of magnetic moment on xy plane and the x-axis. + sc : list of (bool or list of 3 bool), optional + List of the spin constraint flag of each atom. Each element can be a bool or a list of three bools or None. + lambda_ : list of (float or list of 3 float), optional + List of the lambda of each atom. Each element can be a float or a list of three floats. + link_file : bool, optional + Whether to link the pseudo potential files and orbital files in the STRU file. + If True, then only filename will be written in the STRU file, and make a soft link to the real file. + For velocity, mag, angle1, angle2, sc, and lambda_, if the value is None, then the corresponding information will not be written. + ABACUS support defining "mag" and "angle1"/"angle2" at the same time, and in this case, the "mag" only define the norm of the magnetic moment, and "angle1" and "angle2" define the direction of the magnetic moment. + If data has spins, then it will be written as mag to STRU file; while if mag is passed at the same time, then mag will be used. + """ + + def _link_file(dest_dir, src_file): + if not os.path.isfile(src_file): + print(f"ERROR: link_file: {src_file} is not a file.") + return False + src_file = os.path.abspath(src_file) + if not os.path.isdir(dest_dir): + os.makedirs(dest_dir) + dest_file = os.path.join(dest_dir, os.path.basename(src_file)) + if os.path.isfile(dest_file): + if os.path.samefile(src_file, dest_file): + return True + else: + os.remove(dest_file) + os.symlink(src_file, dest_file) + return True + + def ndarray2list(i): + if isinstance(i, np.ndarray): + return i.tolist() + else: + return i + + if link_file and dest_dir is None: + print( + "WARNING: make_unlabeled_stru: link_file is True, but dest_dir is None. Will write the filename to STRU but not making soft link." + ) + if dest_dir is not None and dest_dir.strip() == "": + dest_dir = "." + + if mag is None and data.get("spins") is not None and len(data["spins"]) > 0: + mag = data["spins"][frame_idx] + + atom_numbs = sum(data["atom_numbs"]) + for key in [move, velocity, mag, angle1, angle2, sc, lambda_]: + if key is not None: + if ( + not isinstance(ndarray2list(key), (list, tuple)) + and len(key) != atom_numbs + ): + key_name = [name for name, value in locals().items() if value is key][0] + print( + f"ERROR: make_unlabeled_stru: the length of '{key_name}' ({len(key)}) should be equal to the number of atom number ({atom_numbs})." + ) + return "" + + # ATOMIC_SPECIES block out = "ATOMIC_SPECIES\n" + if pp_file is not None: + pp_file = ndarray2list(pp_file) for iele in range(len(data["atom_names"])): + if data["atom_numbs"][iele] == 0: + continue out += data["atom_names"][iele] + " " if mass is not None: out += f"{mass[iele]:.3f} " else: out += "1 " if pp_file is not None: - out += f"{pp_file[iele]}\n" - else: - out += "\n" + if isinstance(pp_file, (list, tuple)): + ipp_file = pp_file[iele] + elif isinstance(pp_file, dict): + if data["atom_names"][iele] not in pp_file: + print( + f"ERROR: make_unlabeled_stru: pp_file does not contain {data['atom_names'][iele]}" + ) + ipp_file = None + else: + ipp_file = pp_file[data["atom_names"][iele]] + else: + ipp_file = None + if ipp_file is not None: + if not link_file: + out += ipp_file + else: + out += os.path.basename(ipp_file.rstrip("/")) + if dest_dir is not None: + _link_file(dest_dir, ipp_file) + + out += "\n" out += "\n" + # NUMERICAL_ORBITAL block if numerical_orbital is not None: assert len(numerical_orbital) == len(data["atom_names"]) + numerical_orbital = ndarray2list(numerical_orbital) out += "NUMERICAL_ORBITAL\n" - for iele in range(len(numerical_orbital)): - out += f"{numerical_orbital[iele]}\n" + for iele in range(len(data["atom_names"])): + if data["atom_numbs"][iele] == 0: + continue + if isinstance(numerical_orbital, (list, tuple)): + inum_orbital = numerical_orbital[iele] + elif isinstance(numerical_orbital, dict): + if data["atom_names"][iele] not in numerical_orbital: + print( + f"ERROR: make_unlabeled_stru: numerical_orbital does not contain {data['atom_names'][iele]}" + ) + inum_orbital = None + else: + inum_orbital = numerical_orbital[data["atom_names"][iele]] + else: + inum_orbital = None + if inum_orbital is not None: + if not link_file: + out += inum_orbital + else: + out += os.path.basename(inum_orbital.rstrip("/")) + if dest_dir is not None: + _link_file(dest_dir, inum_orbital) + out += "\n" out += "\n" + # deepks block if numerical_descriptor is not None: assert isinstance(numerical_descriptor, str) - out += f"NUMERICAL_DESCRIPTOR\n{numerical_descriptor}\n" + if not link_file: + out += f"NUMERICAL_DESCRIPTOR\n{numerical_descriptor}\n" + else: + out += f"NUMERICAL_DESCRIPTOR\n{os.path.basename(numerical_descriptor)}\n" + if dest_dir is not None: + _link_file(dest_dir, numerical_descriptor) out += "\n" + # LATTICE_CONSTANT and LATTICE_VECTORS block out += "LATTICE_CONSTANT\n" out += str(1 / bohr2ang) + "\n\n" @@ -402,24 +766,80 @@ def make_unlabeled_stru( out += "\n" out += "\n" + # ATOMIC_POSITIONS block out += "ATOMIC_POSITIONS\n" out += "Cartesian # Cartesian(Unit is LATTICE_CONSTANT)\n" # ret += "\n" - natom_tot = 0 + natom_tot = 0 # in for loop, it is also the atom index for iele in range(len(data["atom_names"])): + if data["atom_numbs"][iele] == 0: + continue out += data["atom_names"][iele] + "\n" out += "0.0\n" out += str(data["atom_numbs"][iele]) + "\n" for iatom in range(data["atom_numbs"][iele]): iatomtype = np.nonzero(data["atom_types"] == iele)[0][iatom] - out += "%.12f %.12f %.12f %d %d %d\n" % ( - data["coords"][frame_idx][iatomtype, 0], - data["coords"][frame_idx][iatomtype, 1], - data["coords"][frame_idx][iatomtype, 2], - 1, - 1, - 1, - ) + iout = f"{data['coords'][frame_idx][iatomtype, 0]:.12f} {data['coords'][frame_idx][iatomtype, 1]:.12f} {data['coords'][frame_idx][iatomtype, 2]:.12f}" + # add flags for move, velocity, mag, angle1, angle2, and sc + if move is not None: + if ( + isinstance(ndarray2list(move[natom_tot]), (list, tuple)) + and len(move[natom_tot]) == 3 + ): + iout += " " + " ".join( + ["1" if ii else "0" for ii in move[natom_tot]] + ) + elif isinstance(ndarray2list(move[natom_tot]), (int, float, bool)): + iout += " 1 1 1" if move[natom_tot] else " 0 0 0" + else: + iout += " 1 1 1" + + if ( + velocity is not None + and isinstance(ndarray2list(velocity[natom_tot]), (list, tuple)) + and len(velocity[natom_tot]) == 3 + ): + iout += " v " + " ".join([f"{ii:.12f}" for ii in velocity[natom_tot]]) + + if mag is not None: + if isinstance(ndarray2list(mag[natom_tot]), (list, tuple)) and len( + mag[natom_tot] + ) in [1, 3]: + iout += " mag " + " ".join([f"{ii:.12f}" for ii in mag[natom_tot]]) + elif isinstance(ndarray2list(mag[natom_tot]), (int, float)): + iout += " mag " + f"{mag[natom_tot]:.12f}" + + if angle1 is not None and isinstance( + ndarray2list(angle1[natom_tot]), (int, float) + ): + iout += " angle1 " + f"{angle1[natom_tot]:.12f}" + + if angle2 is not None and isinstance( + ndarray2list(angle2[natom_tot]), (int, float) + ): + iout += " angle2 " + f"{angle2[natom_tot]:.12f}" + + if sc is not None: + if isinstance(ndarray2list(sc[natom_tot]), (list, tuple)) and len( + sc[natom_tot] + ) in [1, 3]: + iout += " sc " + " ".join( + ["1" if ii else "0" for ii in sc[natom_tot]] + ) + elif isinstance(ndarray2list(sc[natom_tot]), (int, float, bool)): + iout += " sc " + "1" if sc[natom_tot] else "0" + + if lambda_ is not None: + if isinstance(ndarray2list(lambda_[natom_tot]), (list, tuple)) and len( + lambda_[natom_tot] + ) in [1, 3]: + iout += " lambda " + " ".join( + [f"{ii:.12f}" for ii in lambda_[natom_tot]] + ) + elif isinstance(ndarray2list(lambda_[natom_tot]), (int, float)): + iout += " lambda " + f"{lambda_[natom_tot]:.12f}" + + out += iout + "\n" natom_tot += 1 assert natom_tot == sum(data["atom_numbs"]) return out diff --git a/dpdata/data_type.py b/dpdata/data_type.py index bbc7401d6..851a65c95 100644 --- a/dpdata/data_type.py +++ b/dpdata/data_type.py @@ -46,6 +46,8 @@ class DataType: represents numbers required : bool, default=True whether this data is required + deepmd_name : str, optional + DeePMD-kit data type name. When not given, it is the same as `name`. """ def __init__( @@ -54,11 +56,13 @@ def __init__( dtype: type, shape: tuple[int | Axis, ...] | None = None, required: bool = True, + deepmd_name: str | None = None, ) -> None: self.name = name self.dtype = dtype self.shape = shape self.required = required + self.deepmd_name = name if deepmd_name is None else deepmd_name def real_shape(self, system: System) -> tuple[int]: """Returns expected real shape of a system.""" diff --git a/dpdata/deepmd/comp.py b/dpdata/deepmd/comp.py index 3d656b709..67eddd9f1 100644 --- a/dpdata/deepmd/comp.py +++ b/dpdata/deepmd/comp.py @@ -26,10 +26,7 @@ def _load_set(folder, nopbc: bool): cells = np.zeros((coords.shape[0], 3, 3)) else: cells = np.load(os.path.join(folder, "box.npy")) - eners = _cond_load_data(os.path.join(folder, "energy.npy")) - forces = _cond_load_data(os.path.join(folder, "force.npy")) - virs = _cond_load_data(os.path.join(folder, "virial.npy")) - return cells, coords, eners, forces, virs + return cells, coords def to_system_data(folder, type_map=None, labels=True): @@ -41,31 +38,13 @@ def to_system_data(folder, type_map=None, labels=True): sets = sorted(glob.glob(os.path.join(folder, "set.*"))) all_cells = [] all_coords = [] - all_eners = [] - all_forces = [] - all_virs = [] for ii in sets: - cells, coords, eners, forces, virs = _load_set(ii, data.get("nopbc", False)) + cells, coords = _load_set(ii, data.get("nopbc", False)) nframes = np.reshape(cells, [-1, 3, 3]).shape[0] all_cells.append(np.reshape(cells, [nframes, 3, 3])) all_coords.append(np.reshape(coords, [nframes, -1, 3])) - if eners is not None: - eners = np.reshape(eners, [nframes]) - if labels: - if eners is not None and eners.size > 0: - all_eners.append(np.reshape(eners, [nframes])) - if forces is not None and forces.size > 0: - all_forces.append(np.reshape(forces, [nframes, -1, 3])) - if virs is not None and virs.size > 0: - all_virs.append(np.reshape(virs, [nframes, 3, 3])) data["cells"] = np.concatenate(all_cells, axis=0) data["coords"] = np.concatenate(all_coords, axis=0) - if len(all_eners) > 0: - data["energies"] = np.concatenate(all_eners, axis=0) - if len(all_forces) > 0: - data["forces"] = np.concatenate(all_forces, axis=0) - if len(all_virs) > 0: - data["virials"] = np.concatenate(all_virs, axis=0) # allow custom dtypes if labels: dtypes = dpdata.system.LabeledSystem.DTYPES @@ -82,9 +61,6 @@ def to_system_data(folder, type_map=None, labels=True): "coords", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -93,13 +69,13 @@ def to_system_data(folder, type_map=None, labels=True): f"Shape of {dtype.name} is not (nframes, ...), but {dtype.shape}. This type of data will not converted from deepmd/npy format." ) continue - natoms = data["coords"].shape[1] + natoms = data["atom_types"].shape[0] shape = [ natoms if xx == dpdata.system.Axis.NATOMS else xx for xx in dtype.shape[1:] ] all_data = [] for ii in sets: - tmp = _cond_load_data(os.path.join(ii, dtype.name + ".npy")) + tmp = _cond_load_data(os.path.join(ii, dtype.deepmd_name + ".npy")) if tmp is not None: all_data.append(np.reshape(tmp, [tmp.shape[0], *shape])) if len(all_data) > 0: @@ -136,19 +112,6 @@ def dump(folder, data, set_size=5000, comp_prec=np.float32, remove_sets=True): np.savetxt(os.path.join(folder, "formal_charges.raw"), data["formal_charges"]) # reshape frame properties and convert prec nframes = data["cells"].shape[0] - cells = np.reshape(data["cells"], [nframes, 9]).astype(comp_prec) - coords = np.reshape(data["coords"], [nframes, -1]).astype(comp_prec) - eners = None - forces = None - virials = None - if "energies" in data: - eners = np.reshape(data["energies"], [nframes]).astype(comp_prec) - if "forces" in data: - forces = np.reshape(data["forces"], [nframes, -1]).astype(comp_prec) - if "virials" in data: - virials = np.reshape(data["virials"], [nframes, 9]).astype(comp_prec) - if "atom_pref" in data: - atom_pref = np.reshape(data["atom_pref"], [nframes, -1]).astype(comp_prec) # dump frame properties: cell, coord, energy, force and virial nsets = nframes // set_size if set_size * nsets < nframes: @@ -158,16 +121,6 @@ def dump(folder, data, set_size=5000, comp_prec=np.float32, remove_sets=True): set_end = (ii + 1) * set_size set_folder = os.path.join(folder, "set.%03d" % ii) os.makedirs(set_folder) - np.save(os.path.join(set_folder, "box"), cells[set_stt:set_end]) - np.save(os.path.join(set_folder, "coord"), coords[set_stt:set_end]) - if eners is not None: - np.save(os.path.join(set_folder, "energy"), eners[set_stt:set_end]) - if forces is not None: - np.save(os.path.join(set_folder, "force"), forces[set_stt:set_end]) - if virials is not None: - np.save(os.path.join(set_folder, "virial"), virials[set_stt:set_end]) - if "atom_pref" in data: - np.save(os.path.join(set_folder, "atom_pref"), atom_pref[set_stt:set_end]) try: os.remove(os.path.join(folder, "nopbc")) except OSError: @@ -187,13 +140,8 @@ def dump(folder, data, set_size=5000, comp_prec=np.float32, remove_sets=True): "atom_names", "atom_types", "orig", - "cells", - "coords", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -211,4 +159,4 @@ def dump(folder, data, set_size=5000, comp_prec=np.float32, remove_sets=True): set_stt = ii * set_size set_end = (ii + 1) * set_size set_folder = os.path.join(folder, "set.%03d" % ii) - np.save(os.path.join(set_folder, dtype.name), ddata[set_stt:set_end]) + np.save(os.path.join(set_folder, dtype.deepmd_name), ddata[set_stt:set_end]) diff --git a/dpdata/deepmd/hdf5.py b/dpdata/deepmd/hdf5.py index 6b5878932..cbdaa632b 100644 --- a/dpdata/deepmd/hdf5.py +++ b/dpdata/deepmd/hdf5.py @@ -69,38 +69,7 @@ def to_system_data( data["nopbc"] = True sets = globfilter(g.keys(), "set.*") - data_types = { - "cells": { - "fn": "box", - "labeled": False, - "shape": (3, 3), - "required": "nopbc" not in data, - }, - "coords": { - "fn": "coord", - "labeled": False, - "shape": (natoms, 3), - "required": True, - }, - "energies": { - "fn": "energy", - "labeled": True, - "shape": tuple(), - "required": False, - }, - "forces": { - "fn": "force", - "labeled": True, - "shape": (natoms, 3), - "required": False, - }, - "virials": { - "fn": "virial", - "labeled": True, - "shape": (3, 3), - "required": False, - }, - } + data_types = {} # allow custom dtypes if labels: dtypes = dpdata.system.LabeledSystem.DTYPES @@ -112,14 +81,9 @@ def to_system_data( "atom_names", "atom_types", "orig", - "cells", - "coords", "real_atom_types", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -133,10 +97,10 @@ def to_system_data( ] data_types[dtype.name] = { - "fn": dtype.name, - "labeled": True, + "fn": dtype.deepmd_name, "shape": shape, - "required": False, + "required": dtype.required + and not (dtype.name == "cells" and data.get("nopbc", False)), } for dt, prop in data_types.items(): @@ -206,13 +170,7 @@ def dump( nopbc = data.get("nopbc", False) reshaped_data = {} - data_types = { - "cells": {"fn": "box", "shape": (nframes, 9), "dump": not nopbc}, - "coords": {"fn": "coord", "shape": (nframes, -1), "dump": True}, - "energies": {"fn": "energy", "shape": (nframes,), "dump": True}, - "forces": {"fn": "force", "shape": (nframes, -1), "dump": True}, - "virials": {"fn": "virial", "shape": (nframes, 9), "dump": True}, - } + data_types = {} labels = "energies" in data if labels: @@ -226,14 +184,9 @@ def dump( "atom_names", "atom_types", "orig", - "cells", - "coords", "real_atom_types", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -244,9 +197,9 @@ def dump( continue data_types[dtype.name] = { - "fn": dtype.name, + "fn": dtype.deepmd_name, "shape": (nframes, -1), - "dump": True, + "dump": not (dtype.name == "cells" and nopbc), } for dt, prop in data_types.items(): diff --git a/dpdata/deepmd/raw.py b/dpdata/deepmd/raw.py index f8ddcaf35..81b01cc06 100644 --- a/dpdata/deepmd/raw.py +++ b/dpdata/deepmd/raw.py @@ -49,16 +49,6 @@ def to_system_data(folder, type_map=None, labels=True): data["cells"] = np.loadtxt(os.path.join(folder, "box.raw"), ndmin=2) data["cells"] = np.reshape(data["cells"], [nframes, 3, 3]) data["coords"] = np.reshape(data["coords"], [nframes, -1, 3]) - if labels: - if os.path.exists(os.path.join(folder, "energy.raw")): - data["energies"] = np.loadtxt(os.path.join(folder, "energy.raw")) - data["energies"] = np.reshape(data["energies"], [nframes]) - if os.path.exists(os.path.join(folder, "force.raw")): - data["forces"] = np.loadtxt(os.path.join(folder, "force.raw")) - data["forces"] = np.reshape(data["forces"], [nframes, -1, 3]) - if os.path.exists(os.path.join(folder, "virial.raw")): - data["virials"] = np.loadtxt(os.path.join(folder, "virial.raw")) - data["virials"] = np.reshape(data["virials"], [nframes, 3, 3]) if os.path.isfile(os.path.join(folder, "nopbc")): data["nopbc"] = True # allow custom dtypes @@ -77,9 +67,6 @@ def to_system_data(folder, type_map=None, labels=True): "real_atom_types", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -88,14 +75,14 @@ def to_system_data(folder, type_map=None, labels=True): f"Shape of {dtype.name} is not (nframes, ...), but {dtype.shape}. This type of data will not converted from deepmd/raw format." ) continue - natoms = data["coords"].shape[1] + natoms = data["atom_types"].shape[0] shape = [ natoms if xx == dpdata.system.Axis.NATOMS else xx for xx in dtype.shape[1:] ] - if os.path.exists(os.path.join(folder, f"{dtype.name}.raw")): + if os.path.exists(os.path.join(folder, f"{dtype.deepmd_name}.raw")): data[dtype.name] = np.reshape( - np.loadtxt(os.path.join(folder, f"{dtype.name}.raw")), + np.loadtxt(os.path.join(folder, f"{dtype.deepmd_name}.raw")), [nframes, *shape], ) return data @@ -108,10 +95,6 @@ def dump(folder, data): nframes = data["cells"].shape[0] np.savetxt(os.path.join(folder, "type.raw"), data["atom_types"], fmt="%d") np.savetxt(os.path.join(folder, "type_map.raw"), data["atom_names"], fmt="%s") - np.savetxt(os.path.join(folder, "box.raw"), np.reshape(data["cells"], [nframes, 9])) - np.savetxt( - os.path.join(folder, "coord.raw"), np.reshape(data["coords"], [nframes, -1]) - ) # BondOrder System if "bonds" in data: np.savetxt( @@ -121,21 +104,6 @@ def dump(folder, data): ) if "formal_charges" in data: np.savetxt(os.path.join(folder, "formal_charges.raw"), data["formal_charges"]) - # Labeled System - if "energies" in data: - np.savetxt( - os.path.join(folder, "energy.raw"), - np.reshape(data["energies"], [nframes, 1]), - ) - if "forces" in data: - np.savetxt( - os.path.join(folder, "force.raw"), np.reshape(data["forces"], [nframes, -1]) - ) - if "virials" in data: - np.savetxt( - os.path.join(folder, "virial.raw"), - np.reshape(data["virials"], [nframes, 9]), - ) try: os.remove(os.path.join(folder, "nopbc")) except OSError: @@ -155,14 +123,9 @@ def dump(folder, data): "atom_names", "atom_types", "orig", - "cells", - "coords", "real_atom_types", "real_atom_names", "nopbc", - "energies", - "forces", - "virials", ): # skip as these data contains specific rules continue @@ -174,4 +137,4 @@ def dump(folder, data): ) continue ddata = np.reshape(data[dtype.name], [nframes, -1]) - np.savetxt(os.path.join(folder, f"{dtype.name}.raw"), ddata) + np.savetxt(os.path.join(folder, f"{dtype.deepmd_name}.raw"), ddata) diff --git a/dpdata/plugins/abacus.py b/dpdata/plugins/abacus.py index e3367b351..cbd1475f2 100644 --- a/dpdata/plugins/abacus.py +++ b/dpdata/plugins/abacus.py @@ -1,10 +1,14 @@ from __future__ import annotations +import os from typing import TYPE_CHECKING +import numpy as np + import dpdata.abacus.md import dpdata.abacus.relax import dpdata.abacus.scf +from dpdata.data_type import Axis, DataType from dpdata.format import Format from dpdata.utils import open_file @@ -29,40 +33,49 @@ def to_system(self, data, file_name: FileType, frame_idx=0, **kwargs): The output file name frame_idx : int The index of the frame to dump - pp_file : list of string, optional - List of pseudo potential files - numerical_orbital : list of string, optional - List of orbital files - mass : list of float, optional - List of atomic masses - numerical_descriptor : str, optional - numerical descriptor file **kwargs : dict other parameters """ - pp_file = kwargs.get("pp_file") - numerical_orbital = kwargs.get("numerical_orbital") - mass = kwargs.get("mass") - numerical_descriptor = kwargs.get("numerical_descriptor") stru_string = dpdata.abacus.scf.make_unlabeled_stru( data=data, frame_idx=frame_idx, - pp_file=pp_file, - numerical_orbital=numerical_orbital, - numerical_descriptor=numerical_descriptor, - mass=mass, + dest_dir=os.path.dirname(file_name), + **kwargs, ) with open_file(file_name, "w") as fp: fp.write(stru_string) +def register_mag_data(data): + if "spins" in data: + dt = DataType( + "spins", + np.ndarray, + (Axis.NFRAMES, Axis.NATOMS, 3), + required=False, + deepmd_name="spin", + ) + dpdata.LabeledSystem.register_data_type(dt) + if "mag_forces" in data: + dt = DataType( + "mag_forces", + np.ndarray, + (Axis.NFRAMES, Axis.NATOMS, 3), + required=False, + deepmd_name="force_mag", + ) + dpdata.LabeledSystem.register_data_type(dt) + + @Format.register("abacus/scf") @Format.register("abacus/pw/scf") @Format.register("abacus/lcao/scf") class AbacusSCFFormat(Format): # @Format.post("rot_lower_triangular") def from_labeled_system(self, file_name, **kwargs): - return dpdata.abacus.scf.get_frame(file_name) + data = dpdata.abacus.scf.get_frame(file_name) + register_mag_data(data) + return data @Format.register("abacus/md") @@ -71,7 +84,9 @@ def from_labeled_system(self, file_name, **kwargs): class AbacusMDFormat(Format): # @Format.post("rot_lower_triangular") def from_labeled_system(self, file_name, **kwargs): - return dpdata.abacus.md.get_frame(file_name) + data = dpdata.abacus.md.get_frame(file_name) + register_mag_data(data) + return data @Format.register("abacus/relax") @@ -80,4 +95,6 @@ def from_labeled_system(self, file_name, **kwargs): class AbacusRelaxFormat(Format): # @Format.post("rot_lower_triangular") def from_labeled_system(self, file_name, **kwargs): - return dpdata.abacus.relax.get_frame(file_name) + data = dpdata.abacus.relax.get_frame(file_name) + register_mag_data(data) + return data diff --git a/dpdata/plugins/ase.py b/dpdata/plugins/ase.py index 2ca229268..83a6bcf95 100644 --- a/dpdata/plugins/ase.py +++ b/dpdata/plugins/ase.py @@ -181,7 +181,17 @@ def to_labeled_system(self, data, *args, **kwargs) -> list[ase.Atoms]: # v_pref = 1 * 1e4 / 1.602176621e6 vol = structure.get_volume() # results['stress'] = data["virials"][ii] / (v_pref * vol) - results["stress"] = -data["virials"][ii] / vol + stress33 = -data["virials"][ii] / vol + results["stress"] = np.array( + [ + stress33[0][0], + stress33[1][1], + stress33[2][2], + stress33[1][2], + stress33[0][2], + stress33[0][1], + ] + ) structure.calc = SinglePointCalculator(structure, **results) structures.append(structure) diff --git a/dpdata/qe/scf.py b/dpdata/qe/scf.py index f86708605..341261d22 100755 --- a/dpdata/qe/scf.py +++ b/dpdata/qe/scf.py @@ -7,9 +7,27 @@ from dpdata.utils import open_file -ry2ev = 13.605693009 -bohr2ang = 0.52917721067 -kbar2evperang3 = 1e3 / 1.602176621e6 +from .traj import ( + kbar2evperang3, + ry2ev, +) +from .traj import ( + length_convert as bohr2ang, +) + +_QE_BLOCK_KEYWORDS = [ + "ATOMIC_SPECIES", + "ATOMIC_POSITIONS", + "K_POINTS", + "ADDITIONAL_K_POINTS", + "CELL_PARAMETERS", + "CONSTRAINTS", + "OCCUPATIONS", + "ATOMIC_VELOCITIES", + "ATOMIC_FORCES", + "SOLVENTS", + "HUBBARD", +] def get_block(lines, keyword, skip=0): @@ -17,9 +35,12 @@ def get_block(lines, keyword, skip=0): for idx, ii in enumerate(lines): if keyword in ii: blk_idx = idx + 1 + skip - while len(lines[blk_idx]) == 0: + while len(lines[blk_idx].split()) == 0: blk_idx += 1 - while len(lines[blk_idx]) != 0 and blk_idx != len(lines): + while ( + len(lines[blk_idx].split()) != 0 + and (lines[blk_idx].split()[0] not in _QE_BLOCK_KEYWORDS) + ) and blk_idx != len(lines): ret.append(lines[blk_idx]) blk_idx += 1 break @@ -123,7 +144,7 @@ def get_force(lines, natoms): def get_stress(lines): blk = get_block(lines, "total stress") if len(blk) == 0: - return + return None ret = [] for ii in blk: ret.append([float(jj) for jj in ii.split()[3:6]]) diff --git a/dpdata/system.py b/dpdata/system.py index 2613166a7..08136cb91 100644 --- a/dpdata/system.py +++ b/dpdata/system.py @@ -91,8 +91,10 @@ class System: DataType("atom_names", list, (Axis.NTYPES,)), DataType("atom_types", np.ndarray, (Axis.NATOMS,)), DataType("orig", np.ndarray, (3,)), - DataType("cells", np.ndarray, (Axis.NFRAMES, 3, 3)), - DataType("coords", np.ndarray, (Axis.NFRAMES, Axis.NATOMS, 3)), + DataType("cells", np.ndarray, (Axis.NFRAMES, 3, 3), deepmd_name="box"), + DataType( + "coords", np.ndarray, (Axis.NFRAMES, Axis.NATOMS, 3), deepmd_name="coord" + ), DataType( "real_atom_types", np.ndarray, (Axis.NFRAMES, Axis.NATOMS), required=False ), @@ -849,6 +851,7 @@ def perturb( cell_pert_fraction: float, atom_pert_distance: float, atom_pert_style: str = "normal", + atom_pert_prob: float = 1.0, ): """Perturb each frame in the system randomly. The cell will be deformed randomly, and atoms will be displaced by a random distance in random direction. @@ -877,6 +880,8 @@ def perturb( These points are treated as vector used by atoms to move. Obviously, the max length of the distance atoms move is `atom_pert_distance`. - `'const'`: The distance atoms move will be a constant `atom_pert_distance`. + atom_pert_prob : float + Determine the proportion of the total number of atoms in a frame that are perturbed. Returns ------- @@ -900,7 +905,15 @@ def perturb( tmp_system.data["coords"][0] = np.matmul( tmp_system.data["coords"][0], cell_perturb_matrix ) - for kk in range(len(tmp_system.data["coords"][0])): + pert_natoms = int(atom_pert_prob * len(tmp_system.data["coords"][0])) + pert_atom_id = sorted( + np.random.choice( + range(len(tmp_system.data["coords"][0])), + pert_natoms, + replace=False, + ).tolist() + ) + for kk in pert_atom_id: atom_perturb_vector = get_atom_perturb_vector( atom_pert_distance, atom_pert_style ) @@ -1193,9 +1206,17 @@ class LabeledSystem(System): """ DTYPES: tuple[DataType, ...] = System.DTYPES + ( - DataType("energies", np.ndarray, (Axis.NFRAMES,)), - DataType("forces", np.ndarray, (Axis.NFRAMES, Axis.NATOMS, 3)), - DataType("virials", np.ndarray, (Axis.NFRAMES, 3, 3), required=False), + DataType("energies", np.ndarray, (Axis.NFRAMES,), deepmd_name="energy"), + DataType( + "forces", np.ndarray, (Axis.NFRAMES, Axis.NATOMS, 3), deepmd_name="force" + ), + DataType( + "virials", + np.ndarray, + (Axis.NFRAMES, 3, 3), + required=False, + deepmd_name="virial", + ), DataType("atom_pref", np.ndarray, (Axis.NFRAMES, Axis.NATOMS), required=False), ) diff --git a/tests/abacus.relax/INPUT.spin b/tests/abacus.relax/INPUT.spin new file mode 100644 index 000000000..cbdc3fdd8 --- /dev/null +++ b/tests/abacus.relax/INPUT.spin @@ -0,0 +1,35 @@ +INPUT_PARAMETERS +suffix spin +calculation relax +ecutwfc 100 +scf_thr 1.0e-3 +scf_nmax 200 +smearing_method gauss +smearing_sigma 0.01 +#ks_solver genelpa +basis_type pw +symmetry 0 +noncolin 1 +nspin 4 + +onsite_radius 3 + +relax_nmax 3 + +force_thr 0.00001 + +sc_mag_switch 1 +decay_grad_switch 1 +sc_thr 1e-4 +nsc 100 +nsc_min 2 +alpha_trial 0.01 +sccut 3 + + + +#md_nstep 3 +#md_type nve +#md_dt 1 +#md_tfirst 300 + diff --git a/tests/abacus.relax/STRU.spin b/tests/abacus.relax/STRU.spin new file mode 100644 index 000000000..441b30d1a --- /dev/null +++ b/tests/abacus.relax/STRU.spin @@ -0,0 +1,21 @@ +ATOMIC_SPECIES +Fe 55.845 Fe.upf + +NUMERICAL_ORBITAL +Fe_gga_8au_100Ry_4s2p2d1f.orb + +LATTICE_CONSTANT +1.880277359 +LATTICE_VECTORS + 2.8274254848 0.0000000000 0.0000000000 #latvec1 + 0.0000000000 2.8274254848 0.0000000000 #latvec2 + 0.0000000000 0.0000000000 2.8274254848 #latvec3 + +ATOMIC_POSITIONS +Direct + +Fe #label +1 #magnetism +2 #number of atoms + 0.0000000000 0.0000000000 0.0000000000 mag 1.25 1.25 1.25 sc 1 1 1 + 0.500000000 0.500000000 0.500000000 mag 1.25 1.25 1.25 sc 1 1 1 diff --git a/tests/abacus.scf/C.orb b/tests/abacus.scf/C.orb new file mode 100644 index 000000000..e69de29bb diff --git a/tests/abacus.scf/C.upf b/tests/abacus.scf/C.upf new file mode 100644 index 000000000..e69de29bb diff --git a/tests/abacus.scf/H.orb b/tests/abacus.scf/H.orb new file mode 100644 index 000000000..e69de29bb diff --git a/tests/abacus.scf/H.upf b/tests/abacus.scf/H.upf new file mode 100644 index 000000000..e69de29bb diff --git a/tests/abacus.scf/jle.orb b/tests/abacus.scf/jle.orb new file mode 100644 index 000000000..e69de29bb diff --git a/tests/abacus.scf/stru.ref b/tests/abacus.scf/stru.ref new file mode 100644 index 000000000..8485de36b --- /dev/null +++ b/tests/abacus.scf/stru.ref @@ -0,0 +1,29 @@ +ATOMIC_SPECIES +C 12.000 C.upf +H 1.000 H.upf + +NUMERICAL_ORBITAL +C.orb +H.orb + +LATTICE_CONSTANT +1.8897261246257702 + +LATTICE_VECTORS +5.291772109029999 0.0 0.0 +0.0 5.291772109029999 0.0 +0.0 0.0 5.291772109029999 + +ATOMIC_POSITIONS +Cartesian # Cartesian(Unit is LATTICE_CONSTANT) +C +0.0 +1 +5.192682633809 4.557725978258 4.436846615358 1 1 1 mag 4.000000000000 angle2 100.000000000000 sc 1 lambda 0.100000000000 0.200000000000 0.300000000000 +H +0.0 +4 +5.416431453540 4.011298860305 3.511161492417 1 1 1 mag 1.000000000000 1.000000000000 1.000000000000 angle2 90.000000000000 sc 1 lambda 0.400000000000 0.500000000000 0.600000000000 +4.131588222365 4.706745191323 4.431136645083 1 1 1 mag 1.000000000000 angle1 100.000000000000 angle2 80.000000000000 sc 1 0 1 lambda 0.700000000000 0.800000000000 0.900000000000 +5.630930319126 5.521640894956 4.450356541303 0 0 0 mag 1.000000000000 angle1 90.000000000000 angle2 70.0000000000000 +5.499851012568 4.003388899277 5.342621842622 0 0 0 mag 1.000000000000 angle1 80.000000000000 sc 1 diff --git a/tests/abacus.spin/INPUT b/tests/abacus.spin/INPUT new file mode 100644 index 000000000..bc0b1df0d --- /dev/null +++ b/tests/abacus.spin/INPUT @@ -0,0 +1,27 @@ +INPUT_PARAMETERS +suffix ABACUS +calculation scf +ecutwfc 100 +scf_thr 1e-07 +scf_nmax 100 +out_chg 0 +smearing_method gauss +smearing_sigma 0.01 +mixing_type broyden +mixing_ndim 10 +ks_solver genelpa +basis_type lcao +symmetry 0 +noncolin 1 +lspinorb 0 +nspin 4 +out_mul true +sc_mag_switch 1 +decay_grad_switch 1 +sc_thr 1e-07 +sc_scf_thr 1e-09 +nsc 100 +nsc_min 2 +alpha_trial 0.01 +sccut 3 +cal_force 1 diff --git a/tests/abacus.spin/INPUT.md b/tests/abacus.spin/INPUT.md new file mode 100644 index 000000000..2be678616 --- /dev/null +++ b/tests/abacus.spin/INPUT.md @@ -0,0 +1,34 @@ +INPUT_PARAMETERS +calculation md +ecutwfc 100 +scf_thr 1.0e-3 +scf_nmax 200 +smearing_method gauss +smearing_sigma 0.01 +#ks_solver genelpa +basis_type pw +symmetry 0 +noncolin 1 +nspin 4 + +onsite_radius 3 + +relax_nmax 3 + +force_thr 0.00001 + +sc_mag_switch 1 +decay_grad_switch 1 +sc_thr 1e-4 +nsc 100 +nsc_min 2 +alpha_trial 0.01 +sccut 3 + + +md_type nvt +md_nstep 3 +md_dt 1 +md_tfirst 300 +md_tfreq 1 + diff --git a/tests/abacus.spin/INPUT.relax b/tests/abacus.spin/INPUT.relax new file mode 100644 index 000000000..9a9466d3f --- /dev/null +++ b/tests/abacus.spin/INPUT.relax @@ -0,0 +1,34 @@ +INPUT_PARAMETERS +calculation relax +ecutwfc 100 +scf_thr 1.0e-3 +scf_nmax 200 +smearing_method gauss +smearing_sigma 0.01 +#ks_solver genelpa +basis_type pw +symmetry 0 +noncolin 1 +nspin 4 + +onsite_radius 3 + +relax_nmax 3 + +force_thr 0.00001 + +sc_mag_switch 1 +decay_grad_switch 1 +sc_thr 1e-4 +nsc 100 +nsc_min 2 +alpha_trial 0.01 +sccut 3 + + + +#md_nstep 3 +#md_type nve +#md_dt 1 +#md_tfirst 300 + diff --git a/tests/abacus.spin/INPUT.scf b/tests/abacus.spin/INPUT.scf new file mode 100644 index 000000000..bc0b1df0d --- /dev/null +++ b/tests/abacus.spin/INPUT.scf @@ -0,0 +1,27 @@ +INPUT_PARAMETERS +suffix ABACUS +calculation scf +ecutwfc 100 +scf_thr 1e-07 +scf_nmax 100 +out_chg 0 +smearing_method gauss +smearing_sigma 0.01 +mixing_type broyden +mixing_ndim 10 +ks_solver genelpa +basis_type lcao +symmetry 0 +noncolin 1 +lspinorb 0 +nspin 4 +out_mul true +sc_mag_switch 1 +decay_grad_switch 1 +sc_thr 1e-07 +sc_scf_thr 1e-09 +nsc 100 +nsc_min 2 +alpha_trial 0.01 +sccut 3 +cal_force 1 diff --git a/tests/abacus.spin/OUT.ABACUS/MD_dump b/tests/abacus.spin/OUT.ABACUS/MD_dump new file mode 100644 index 000000000..a4d41a9bb --- /dev/null +++ b/tests/abacus.spin/OUT.ABACUS/MD_dump @@ -0,0 +1,44 @@ +MDSTEP: 0 +LATTICE_CONSTANT: 0.994999532004 Angstrom +LATTICE_VECTORS + 2.827425484800 0.000000000000 0.000000000000 + 0.000000000000 2.827425484800 0.000000000000 + 0.000000000000 0.000000000000 2.827425484800 +INDEX LABEL POSITION (Angstrom) FORCE (eV/Angstrom) VELOCITY (Angstrom/fs) + 0 Fe 0.000000000000 0.000000000000 0.000000000000 -0.000023448027 0.000084873040 0.000395963967 0.001501148908 0.001168257569 -0.001755430621 + 1 Fe 1.406643426095 1.406643426095 1.406643426095 0.000023448027 -0.000084873040 -0.000395963967 -0.001501148908 -0.001168257569 0.001755430621 + + +MDSTEP: 1 +LATTICE_CONSTANT: 0.994999532004 Angstrom +LATTICE_VECTORS + 2.827425484800 0.000000000000 0.000000000000 + 0.000000000000 2.827425484800 0.000000000000 + 0.000000000000 0.000000000000 2.827425484800 +INDEX LABEL POSITION (Angstrom) FORCE (eV/Angstrom) VELOCITY (Angstrom/fs) + 0 Fe 0.001501146882 0.001168264901 2.811531455776 -0.082174998068 -0.064183237637 0.094555758230 0.001495732780 0.001164031434 -0.001749198271 + 1 Fe 1.405142279213 1.405475161194 1.408398822510 0.082174998068 0.064183237637 -0.094555758230 -0.001495732780 -0.001164031434 0.001749198271 + + +MDSTEP: 2 +LATTICE_CONSTANT: 0.994999532004 Angstrom +LATTICE_VECTORS + 2.827425484800 0.000000000000 0.000000000000 + 0.000000000000 2.827425484800 0.000000000000 + 0.000000000000 0.000000000000 2.827425484800 +INDEX LABEL POSITION (Angstrom) FORCE (eV/Angstrom) VELOCITY (Angstrom/fs) + 0 Fe 0.002994040541 0.002330066808 2.809785444314 -0.026325867140 -0.019829200318 0.032814119442 0.001497639352 0.001165552232 -0.001751386047 + 1 Fe 1.403649385554 1.404313359287 1.410144833972 0.026325867140 0.019829200318 -0.032814119442 -0.001497639352 -0.001165552232 0.001751386047 + + +MDSTEP: 3 +LATTICE_CONSTANT: 0.994999532004 Angstrom +LATTICE_VECTORS + 2.827425484800 0.000000000000 0.000000000000 + 0.000000000000 2.827425484800 0.000000000000 + 0.000000000000 0.000000000000 2.827425484800 +INDEX LABEL POSITION (Angstrom) FORCE (eV/Angstrom) VELOCITY (Angstrom/fs) + 0 Fe 0.004498128094 0.003500694358 2.808026692717 -0.044129139592 -0.028138926921 0.059726500602 0.001507997443 0.001174209539 -0.001762617927 + 1 Fe 1.402145298001 1.403142731738 1.411903585568 0.044129139592 0.028138926921 -0.059726500602 -0.001507997443 -0.001174209539 0.001762617927 + + diff --git a/tests/abacus.spin/OUT.ABACUS/running_md.log b/tests/abacus.spin/OUT.ABACUS/running_md.log new file mode 100644 index 000000000..272a44cec --- /dev/null +++ b/tests/abacus.spin/OUT.ABACUS/running_md.log @@ -0,0 +1,997 @@ + + ABACUS v3.7.1 + + Atomic-orbital Based Ab-initio Computation at UStc + + Website: http://abacus.ustc.edu.cn/ + Documentation: https://abacus.deepmodeling.com/ + Repository: https://github.com/abacusmodeling/abacus-develop + https://github.com/deepmodeling/abacus-develop + Commit: 8443c42b5 (Thu Sep 5 14:19:05 2024 +0800) + + Start Time is Fri Sep 6 10:04:51 2024 + + ------------------------------------------------------------------------------------ + + READING GENERAL INFORMATION + global_out_dir = OUT.ABACUS/ + global_in_card = INPUT + pseudo_dir = ./ + orbital_dir = ./ + DRANK = 1 + DSIZE = 1 + DCOLOR = 1 + GRANK = 1 + GSIZE = 1 + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading atom information in unitcell: | + | From the input file and the structure file we know the number of | + | different elments in this unitcell, then we list the detail | + | information for each element, especially the zeta and polar atomic | + | orbital number for each element. The total atom number is counted. | + | We calculate the nearest atom distance for each atom and show the | + | Cartesian and Direct coordinates for each atom. We list the file | + | address for atomic orbitals. The volume and the lattice vectors | + | in real and reciprocal space is also shown. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + READING UNITCELL INFORMATION + ntype = 1 + lattice constant (Bohr) = 1.88028 + lattice constant (Angstrom) = 0.995 + + READING ATOM TYPE 1 + atom label = Fe + L=0, number of zeta = 4 + L=1, number of zeta = 2 + L=2, number of zeta = 2 + L=3, number of zeta = 1 + number of atom for this type = 2 + magnetization of element 1 = [ 1.25, 1.25, 1.25 ] + + TOTAL ATOM NUMBER = 2 +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.0000000000 0.0000000000 0.0000000000 2.1651 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000000000 0.5000000000 0.5000000000 2.1651 0.0000000000 0.0000000000 0.0000000000 + + + + Volume (Bohr^3) = 150.259 + Volume (A^3) = 22.266 + + Lattice vectors: (Cartesian coordinate: in unit of a_0) + +2.82743 +0 +0 + +0 +2.82743 +0 + +0 +0 +2.82743 + Reciprocal vectors: (Cartesian coordinate: in unit of 2 pi/a_0) + +0.353679 -0 +0 + -0 +0.353679 -0 + +0 -0 +0.353679 + The esolver type has been set to : ksdft_pw + + RUNNING WITH DEVICE : CPU / Intel(R) Xeon(R) Platinum + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading pseudopotentials files: | + | The pseudopotential file is in UPF format. The 'NC' indicates that | + | the type of pseudopotential is 'norm conserving'. Functional of | + | exchange and correlation is decided by 4 given parameters in UPF | + | file. We also read in the 'core correction' if there exists. | + | Also we can read the valence electrons number and the maximal | + | angular momentum used in this pseudopotential. We also read in the | + | trail wave function, trail atomic density and local-pseudopotential| + | on logrithmic grid. The non-local pseudopotential projector is also| + | read in if there is any. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + PAO radial cut off (Bohr) = 15 + + Read in pseudopotential file is Fe.upf + pseudopotential type = NC + exchange-correlation functional = PBE + nonlocal core correction = 1 + valence electrons = 16 + lmax = 2 + number of zeta = 4 + number of projectors = 6 + L of projector = 0 + L of projector = 0 + L of projector = 1 + L of projector = 1 + L of projector = 2 + L of projector = 2 + initial pseudo atomic orbital number = 40 + NLOCAL = 108 + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + Warning: the number of valence electrons in pseudopotential > 8 for Fe: [Ar] 3d6 4s2 + Pseudopotentials with additional electrons can yield (more) accurate outcomes, but may be less efficient. + If you're confident that your chosen pseudopotential is appropriate, you can safely ignore this warning. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of charge/potential: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane waves | + | is 'npw' in each processor. | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP THE PLANE WAVE BASIS + energy cutoff for charge/potential (unit:Ry) = 400 + fft grid for charge/potential = [ 36, 36, 36 ] + fft grid division = [ 1, 1, 1 ] + big fft grid for charge/potential = [ 36, 36, 36 ] + nbxx = 46656 + nrxx = 46656 + + SETUP PLANE WAVES FOR CHARGE/POTENTIAL + number of plane waves = 20341 + number of sticks = 885 + + PARALLEL PW FOR CHARGE/POTENTIAL + PROC COLUMNS(POT) PW + 1 885 20341 + --------------- sum ------------------- + 1 885 20341 + number of |g| = 241 + max |g| = 35.7753 + min |g| = 0 + +----------- Double Check Mixing Parameters Begin ------------ +mixing_type: broyden +mixing_beta: 0.4 +mixing_gg0: 1 +mixing_gg0_min: 0.1 +mixing_beta_mag: 1.6 +mixing_gg0_mag: 0 +mixing_ndim: 8 +----------- Double Check Mixing Parameters End ------------ + + SETUP THE ELECTRONS NUMBER + electron number of element Fe = 16 + total electron number of element Fe = 32 + AUTOSET number of electrons: = 32 + DONE : SETUP UNITCELL Time : 0.102785 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup K-points | + | We setup the k-points according to input parameters. | + | The reduced k-points are set according to symmetry operations. | + | We treat the spin as another set of k-points. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP K-POINTS + nspin = 4 + Input type of k points = Monkhorst-Pack(Gamma) + nkstot = 1 + nkstot_ibz = 1 +K-POINTS REDUCTION ACCORDING TO SYMMETRY + IBZ DIRECT_X DIRECT_Y DIRECT_Z WEIGHT ibz2bz + 1 0.00000000 0.00000000 0.00000000 1.0000 0 + + nkstot now = 1 +K-POINTS DIRECT COORDINATES + KPOINTS DIRECT_X DIRECT_Y DIRECT_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + + k-point number in this process = 1 + minimum distributed K point number = 1 + +K-POINTS CARTESIAN COORDINATES + KPOINTS CARTESIAN_X CARTESIAN_Y CARTESIAN_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + +K-POINTS DIRECT COORDINATES + KPOINTS DIRECT_X DIRECT_Y DIRECT_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + DONE : INIT K-POINTS Time : 0.112353 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of wave functions: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane wave of | + | each k-point is 'npwk[ik]' in each processor | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP PLANE WAVES FOR WAVE FUNCTIONS + energy cutoff for wavefunc (unit:Ry) = 100 + fft grid for wave functions = [ 36, 36, 36 ] + number of plane waves = 2517 + number of sticks = 221 + + PARALLEL PW FOR WAVE FUNCTIONS + PROC COLUMNS(POT) PW + 1 221 2517 + --------------- sum ------------------- + 1 221 2517 + DONE : INIT PLANEWAVE Time : 0.113487 (SEC) + + occupied bands = 16 + NBANDS = 52 + + SETUP NONLOCAL PSEUDOPOTENTIALS IN PLANE WAVE BASIS + Fe non-local projectors: + projector 1 L=0 + projector 2 L=0 + projector 3 L=1 + projector 4 L=1 + projector 5 L=2 + projector 6 L=2 + TOTAL NUMBER OF NONLOCAL PROJECTORS = 36 + DONE : LOCAL POTENTIAL Time : 0.128854 (SEC) + + + Init Non-Local PseudoPotential table : + Init Non-Local-Pseudopotential done. + DONE : NON-LOCAL POTENTIAL Time : 0.15862 (SEC) + + npwx = 2517 + + Make real space PAO into reciprocal space. + max mesh points in Pseudopotential = 1425 + dq(describe PAO in reciprocal space) = 0.01 + max q = 1204 + + number of pseudo atomic orbitals for Fe is 4 +WARNING: norm of atomic wavefunction # 2 of atomic type Fe is 0.999981, renormalized +WARNING: norm of atomic wavefunction # 3 of atomic type Fe is 0.999997, renormalized + DONE : INIT BASIS Time : 0.330341 (SEC) + + + ------------------------------------------- + STEP OF MOLECULAR DYNAMICS : 0 + ------------------------------------------- + init_chg = atomic + DONE : INIT SCF Time : 0.528545 (SEC) + + + PW ALGORITHM --------------- ION= 1 ELEC= 1-------------------------------- +total magnetism (Bohr mag/cell) 2.30943 2.30938 2.30941 + absolute magnetism (Bohr mag/cell) = 4.01976 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.0686869 + Origin diag_ethr = 0.01 + New diag_ethr = 0.000214646 +total magnetism (Bohr mag/cell) 2.30943 2.30937 2.3094 + absolute magnetism (Bohr mag/cell) = 4.01964 + + Density error is 0.0548949686243 + Error Threshold = 0.000214646406708 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6632803550 -6825.4790901992 + E_Harris -501.6647758269 -6825.4994371390 + E_Fermi 1.4575316668 19.8307356840 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 2-------------------------------- +total magnetism (Bohr mag/cell) 2.3094424965 2.30934448798 2.30941621651 + absolute magnetism (Bohr mag/cell) = 4.13707180938 + + Density error is 0.00986449919003 + Error Threshold = 0.000171546776951 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6774595966 -6825.6720086784 + E_Harris -499.7039503033 -6798.8210372331 + E_Fermi 1.4964230898 20.3598806394 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 3-------------------------------- +total magnetism (Bohr mag/cell) 2.30944490813 2.30935345105 2.30940487564 + absolute magnetism (Bohr mag/cell) = 4.08853707061 + + Density error is 0.00240445773415 + Error Threshold = 3.08265599688e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6784060189 -6825.6848854146 + E_Harris -501.4802459250 -6822.9887790210 + E_Fermi 1.4994551309 20.4011336751 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 4-------------------------------- +total magnetism (Bohr mag/cell) 2.30944724752 2.30935862214 2.30939736766 + absolute magnetism (Bohr mag/cell) = 4.08848804651 + + Density error is 0.00057214611471 + Error Threshold = 7.51393041921e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6784787714 -6825.6858752634 + E_KS(sigma->0) -501.6746222162 -6825.6334041381 + E_Harris -501.6738375513 -6825.6227282240 + E_band -27.9117558414 -379.7589206280 + E_one_elec -203.4207485774 -2767.6812720784 + E_Hartree 123.6718684724 1682.6420935310 + E_xc -71.4390193374 -971.9777225215 + E_Ewald -350.4828662186 -4768.5640319440 + E_entropy(-TS) -0.0077131104 -0.1049422506 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.5017611709 20.4325089589 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe 0.0000000000 0.0000000000 0.0000000000 + Fe 0.0000000000 0.0000000000 0.0000000000 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1149 0.0010 0.0010 0.0010 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5931 1.1679 1.1678 1.1678 + Sum 13.7051 1.1691 1.1690 1.1690 +Fe2 + s 1.1150 0.0010 0.0010 0.0010 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5959 1.1671 1.1671 1.1672 + Sum 13.7079 1.1683 1.1683 1.1684 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.1690981855 1.1689596529 1.1689548475 + Fe 1.1682782547 1.1683271615 1.1683689897 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.6858753 eV + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0000234480 0.0000848730 0.0003959639 + Fe2 0.0000234480 -0.0000848730 -0.0003959639 +------------------------------------------------------------------------------------------ + + + + ------------------------------------------------------------------------------------------------ + Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) + -501.67563 -501.67848 0.0028501339 300 + ------------------------------------------------------------------------------------------------ + + + + ------------------------------------------- + STEP OF MOLECULAR DYNAMICS : 1 + ------------------------------------------- + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + NEW-OLD atomic charge density approx. for the potential ! + DONE : INIT SCF Time : 4.69025 (SEC) + + + PW ALGORITHM --------------- ION=2 ELEC=1 -------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 7.51393e-06 . +total magnetism (Bohr mag/cell) 2.46069 2.4606 2.46063 + absolute magnetism (Bohr mag/cell) = 4.35476 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.00192412 + Origin diag_ethr = 0.01 + New diag_ethr = 6.01286e-06 +total magnetism (Bohr mag/cell) 2.46066 2.46058 2.46061 + absolute magnetism (Bohr mag/cell) = 4.36174 + + Density error is 0.00201217065486 + Error Threshold = 6.01286073232e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6717206991 -6825.5939269727 + E_Harris -501.6715817664 -6825.5920366956 + E_Fermi 1.4766917900 20.0914225341 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 2-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.01286073232e-06 . +total magnetism (Bohr mag/cell) 2.45367664792 2.45369451898 2.45369632661 + absolute magnetism (Bohr mag/cell) = 4.36076913778 + + Density error is 0.00924150911613 + Error Threshold = 6.28803329643e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6713570140 -6825.5889787830 + E_Harris -501.5122751175 -6823.4245585418 + E_Fermi 1.4801602125 20.1386128426 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 3-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.28803329643e-06 . +total magnetism (Bohr mag/cell) 2.45535480016 2.45535779838 2.45535744914 + absolute magnetism (Bohr mag/cell) = 4.36222821556 + + Density error is 0.00222730537898 + Error Threshold = 6.28803329643e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6723462878 -6825.6024385430 + E_Harris -501.6357961303 -6825.1051481383 + E_Fermi 1.4800078639 20.1365400332 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 4-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.28803329643e-06 . +total magnetism (Bohr mag/cell) 2.4557794855 2.45578128279 2.45578053957 + absolute magnetism (Bohr mag/cell) = 4.36171007414 + + Density error is 6.47878398594e-06 + Error Threshold = 6.28803329643e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6724876966 -6825.6043625085 + E_KS(sigma->0) -501.6678952474 -6825.5418790320 + E_Harris -501.6633376598 -6825.4798698707 + E_band -27.8834155884 -379.3733317038 + E_one_elec -203.5744480246 -2769.7724603392 + E_Hartree 123.7840339882 1684.1681836654 + E_xc -71.4833250872 -972.5805331721 + E_Ewald -350.4821832426 -4768.5547395789 + E_entropy(-TS) -0.0091848983 -0.1249669530 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4799614353 20.1359083399 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.1674727502 -0.1674714507 -0.1674677599 + Fe -0.1685388103 -0.1685393463 -0.1685411873 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5877 1.2479 1.2479 1.2479 + Sum 13.6994 1.2500 1.2501 1.2501 +Fe2 + s 1.1148 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5911 1.2480 1.2480 1.2480 + Sum 13.7030 1.2502 1.2502 1.2502 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.2500362016 1.2500750113 1.2500654974 + Fe 1.2501907811 1.2501525281 1.2501618807 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.6043625 eV + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0821749928 -0.0641832335 0.0945557521 + Fe2 0.0821749928 0.0641832335 -0.0945557521 +------------------------------------------------------------------------------------------ + + + + ------------------------------------------------------------------------------------------------ + Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) + -501.66966 -501.67249 0.0028297442 297.85381 + ------------------------------------------------------------------------------------------------ + + + + ------------------------------------------- + STEP OF MOLECULAR DYNAMICS : 2 + ------------------------------------------- + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + first order charge density extrapolation ! + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + DONE : INIT SCF Time : 20.3341 (SEC) + + + PW ALGORITHM --------------- ION=3 ELEC=1 -------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.28803e-06 . +total magnetism (Bohr mag/cell) 2.45486 2.45489 2.45489 + absolute magnetism (Bohr mag/cell) = 4.36543 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.00210159 + Origin diag_ethr = 0.01 + New diag_ethr = 6.56747e-06 +total magnetism (Bohr mag/cell) 2.45485 2.45488 2.45488 + absolute magnetism (Bohr mag/cell) = 4.36511 + + Density error is 0.00210610440114 + Error Threshold = 6.56747174472e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6717145278 -6825.5938430078 + E_Harris -501.6715861090 -6825.5920957801 + E_Fermi 1.4832199190 20.1802422850 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 2-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.56747174472e-06 . +total magnetism (Bohr mag/cell) 2.45728332606 2.45728465763 2.45728362282 + absolute magnetism (Bohr mag/cell) = 4.36144612893 + + Density error is 0.0100994423697 + Error Threshold = 6.58157625357e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6712030534 -6825.5868840416 + E_Harris -501.8309806843 -6827.7607702341 + E_Fermi 1.4801826654 20.1389183308 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 3-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.58157625357e-06 . +total magnetism (Bohr mag/cell) 2.45602003892 2.45602235568 2.45602305001 + absolute magnetism (Bohr mag/cell) = 4.36008011062 + + Density error is 0.0022259696948 + Error Threshold = 6.58157625357e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6723719367 -6825.6027875138 + E_Harris -501.7036416542 -6826.0282338473 + E_Fermi 1.4800402952 20.1369812842 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 4-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.58157625357e-06 . +total magnetism (Bohr mag/cell) 2.45568827013 2.45568820365 2.45568816609 + absolute magnetism (Bohr mag/cell) = 4.36059357058 + + Density error is 0.000113741995613 + Error Threshold = 6.58157625357e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6725298576 -6825.6049361390 + E_KS(sigma->0) -501.6679841586 -6825.5430887303 + E_Harris -501.6890083521 -6825.8291375583 + E_band -27.8841363403 -379.3831380370 + E_one_elec -203.5689978550 -2769.6983069772 + E_Hartree 123.7762138387 1684.0617850727 + E_xc -71.4816492900 -972.5577327814 + E_Ewald -350.4801490952 -4768.5270635846 + E_entropy(-TS) -0.0090913981 -0.1236948175 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4800346303 20.1369042091 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.1652181739 -0.1652325578 -0.1652321249 + Fe -0.1654941827 -0.1654786653 -0.1654791319 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5895 1.2477 1.2476 1.2476 + Sum 13.7013 1.2499 1.2498 1.2498 +Fe2 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5893 1.2478 1.2479 1.2479 + Sum 13.7011 1.2500 1.2500 1.2500 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.2498513779 1.2497690096 1.2497695030 + Fe 1.2499638767 1.2500461778 1.2500456124 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.6049361 eV + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0263258654 -0.0198291990 0.0328141173 + Fe2 0.0263258654 0.0198291990 -0.0328141173 +------------------------------------------------------------------------------------------ + + + + ------------------------------------------------------------------------------------------------ + Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) + -501.66969 -501.67253 0.0028369371 298.61093 + ------------------------------------------------------------------------------------------------ + + + + ------------------------------------------- + STEP OF MOLECULAR DYNAMICS : 3 + ------------------------------------------- + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + second order charge density extrapolation ! + alpha = -0.46539717 + beta = 1.4648176 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + Find the file, try to read charge from file. + read in fermi energy = 0 + DONE : INIT SCF Time : 41.017 (SEC) + + + PW ALGORITHM --------------- ION=4 ELEC=1 -------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 6.58158e-06 . +total magnetism (Bohr mag/cell) 2.45395 2.45395 2.45395 + absolute magnetism (Bohr mag/cell) = 4.36621 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.00327757 + Origin diag_ethr = 0.01 + New diag_ethr = 1.02424e-05 +total magnetism (Bohr mag/cell) 2.45393 2.45393 2.45393 + absolute magnetism (Bohr mag/cell) = 4.36585 + + Density error is 0.00328180767194 + Error Threshold = 1.02424082459e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6714819577 -6825.5906787296 + E_Harris -501.6704871756 -6825.5771440242 + E_Fermi 1.4848945022 20.2030261586 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 4 ELEC= 2-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 1.02424082459e-05 . +total magnetism (Bohr mag/cell) 2.45834495411 2.45824446616 2.45825644792 + absolute magnetism (Bohr mag/cell) = 4.36143824469 + + Density error is 0.00407139541475 + Error Threshold = 1.02556489748e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6718059210 -6825.5950864757 + E_Harris -501.8968017467 -6828.6563117308 + E_Fermi 1.4803720649 20.1414952427 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 4 ELEC= 3-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 1.02556489748e-05 . +total magnetism (Bohr mag/cell) 2.4561430127 2.4561402075 2.45614046704 + absolute magnetism (Bohr mag/cell) = 4.36006713268 + + Density error is 0.00621121698173 + Error Threshold = 1.02556489748e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6723961915 -6825.6031175180 + E_Harris -501.7084280186 -6826.0933556758 + E_Fermi 1.4808558000 20.1480767961 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 4 ELEC= 4-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0 ; where current threshold is: 1.02556489748e-05 . +total magnetism (Bohr mag/cell) 2.45642597595 2.45642438896 2.45642568116 + absolute magnetism (Bohr mag/cell) = 4.36090201409 + + Density error is 0.000907798588431 + Error Threshold = 1.02556489748e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6725094449 -6825.6046584088 + E_KS(sigma->0) -501.6682437690 -6825.5466209109 + E_Harris -501.6882798535 -6825.8192258261 + E_band -27.8806642947 -379.3358984328 + E_one_elec -203.5720364691 -2769.7396494442 + E_Hartree 123.7795681857 1684.1074233046 + E_xc -71.4830945963 -972.5773971831 + E_Ewald -350.4767334207 -4768.4805909482 + E_entropy(-TS) -0.0085313518 -0.1160749959 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4811684035 20.1523299848 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.1614117188 -0.1614064417 -0.1614126965 + Fe -0.1590151938 -0.1590593187 -0.1590482375 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1148 0.0020 0.0020 0.0020 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5942 1.2476 1.2477 1.2477 + Sum 13.7061 1.2498 1.2499 1.2499 +Fe2 + s 1.1146 0.0018 0.0018 0.0018 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5847 1.2480 1.2480 1.2480 + Sum 13.6964 1.2501 1.2500 1.2500 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.2498251342 1.2498544518 1.2498533551 + Fe 1.2500507306 1.2500181434 1.2500206507 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.6046584 eV + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0441291367 -0.0281389251 0.0597264967 + Fe2 0.0441291367 0.0281389251 -0.0597264967 +------------------------------------------------------------------------------------------ + + + + ------------------------------------------------------------------------------------------------ + Energy (Ry) Potential (Ry) Kinetic (Ry) Temperature (K) + -501.66963 -501.67251 0.0028755884 302.67929 + ------------------------------------------------------------------------------------------------ + + + + + -------------------------------------------- + !FINAL_ETOT_IS -6825.60465840883 eV + -------------------------------------------- + + +TIME STATISTICS +----------------------------------------------------------------------------- + CLASS_NAME NAME TIME/s CALLS AVG/s PER/% +----------------------------------------------------------------------------- + total 59.14 21 2.82 100.00 + Driver reading 0.03 1 0.03 0.05 + Input_Conv Convert 0.00 1 0.00 0.00 + Driver driver_line 59.11 1 59.11 99.95 + UnitCell check_tau 0.00 1 0.00 0.00 + PW_Basis_Sup setuptransform 0.00 1 0.00 0.01 + PW_Basis_Sup distributeg 0.00 1 0.00 0.00 + mymath heapsort 0.00 7 0.00 0.00 + PW_Basis_K setuptransform 0.00 1 0.00 0.00 + PW_Basis_K distributeg 0.00 1 0.00 0.00 + PW_Basis setup_struc_factor 0.01 4 0.00 0.01 + ppcell_vnl init 0.00 1 0.00 0.00 + ppcell_vl init_vloc 0.01 1 0.01 0.01 + ppcell_vnl init_vnl 0.03 1 0.03 0.05 + WF_atomic init_at_1 0.17 1 0.17 0.29 + wavefunc wfcinit 0.00 1 0.00 0.00 + Run_MD md_line 58.80 1 58.80 99.43 + Nose_Hoover setup 4.18 1 4.18 7.06 + MD_func force_virial 58.73 4 14.68 99.31 + ESolver_KS_PW runner 58.35 4 14.59 98.66 + H_Ewald_pw compute_ewald 0.00 4 0.00 0.01 + Charge set_rho_core 0.03 4 0.01 0.05 + PW_Basis_Sup recip2real 0.35 492 0.00 0.60 + PW_Basis_Sup gathers_scatterp 0.06 492 0.00 0.10 + Charge atomic_rho 0.09 8 0.01 0.15 + Potential init_pot 0.28 4 0.07 0.47 + Potential update_from_charge 1.36 20 0.07 2.29 + Potential cal_fixed_v 0.00 4 0.00 0.01 + PotLocal cal_fixed_v 0.00 4 0.00 0.00 + Potential cal_v_eff 1.34 20 0.07 2.27 + H_Hartree_pw v_hartree 0.04 20 0.00 0.06 + PW_Basis_Sup real2recip 0.33 648 0.00 0.56 + PW_Basis_Sup gatherp_scatters 0.03 648 0.00 0.05 + PotXC cal_v_eff 1.30 20 0.06 2.20 + XC_Functional v_xc 1.55 24 0.06 2.63 + Potential interpolate_vrs 0.01 20 0.00 0.01 + OnsiteProj cubspl_tabulate 0.09 1 0.09 0.16 + Charge_Mixing init_mixing 0.00 4 0.00 0.01 + ESolver_KS_PW hamilt2density 10.19 20 0.51 17.24 + HSolverPW solve 16.62 32 0.52 28.10 + pp_cell_vnl getvnl 0.86 330 0.00 1.46 + Structure_Factor get_sk 0.10 340 0.00 0.16 + OnsiteProj getvnl 0.00 330 0.00 0.00 + OnsiteProj tabulate_atomic 0.00 366 0.00 0.00 + WF_atomic atomic_wfc 0.01 1 0.01 0.01 + DiagoIterAssist diagH_subspace_init 0.13 1 0.13 0.23 + Operator hPsi 48.88 4254 0.01 82.65 + Operator EkineticPW 0.25 4254 0.00 0.41 + Operator VeffPW 43.72 4254 0.01 73.93 + PW_Basis_K recip2real 12.72 43840 0.00 21.51 + PW_Basis_K gathers_scatterp 1.93 43840 0.00 3.26 + PW_Basis_K real2recip 11.60 41760 0.00 19.62 + PW_Basis_K gatherp_scatters 0.85 41760 0.00 1.44 + Operator NonlocalPW 3.23 4254 0.00 5.46 + Nonlocal add_nonlocal_pp 1.98 4254 0.00 3.35 + Operator OnsiteProjPW 1.67 4254 0.00 2.82 + OnsiteProj overlap 0.82 4290 0.00 1.39 + FS_Nonlocal_tools cal_becp 0.83 4298 0.00 1.40 + OnsiteProj add_onsite_proj 0.70 4254 0.00 1.19 + DiagoIterAssist diagH_LAPACK 0.36 326 0.00 0.61 + DiagoCG diag_once 12.02 32 0.38 20.33 + DiagoCG_New spsi_func 0.11 7856 0.00 0.19 + DiagoCG_New hpsi_func 10.47 3928 0.00 17.70 + ElecStatePW psiToRho 0.90 20 0.05 1.52 + Charge_Mixing get_drho 0.10 20 0.00 0.17 + Charge_Mixing inner_product_recip_rho 0.00 20 0.00 0.01 + Charge mix_rho 0.14 12 0.01 0.24 + Charge Broyden_mixing 0.02 12 0.00 0.03 + DiagoIterAssist diagH_subspace 3.39 27 0.13 5.73 + Charge_Mixing inner_product_recip_hartree 0.01 24 0.00 0.01 + OnsiteProj cal_occupation 0.01 4 0.00 0.01 + Forces cal_force_loc 0.01 4 0.00 0.01 + Forces cal_force_ew 0.01 4 0.00 0.01 + Forces cal_force_nl 0.03 4 0.01 0.06 + FS_Nonlocal_tools cal_dbecp_f 0.04 24 0.00 0.06 + Forces cal_force_onsite 0.02 4 0.00 0.03 + Forces cal_force_cc 0.29 4 0.07 0.49 + Forces cal_force_scc 0.03 4 0.01 0.05 + Nose_Hoover first_half 0.00 3 0.00 0.00 + SpinConstrain cal_mw_from_lambda 44.69 310 0.14 75.57 + DiagoIterAssist diag_responce 37.41 298 0.13 63.25 + Nose_Hoover second_half 0.00 3 0.00 0.00 + ModuleIO write_istate_info 0.01 1 0.01 0.01 +----------------------------------------------------------------------------- + + + NAME-------------------------|MEMORY(MB)-------- +total 24.43 +Psi_PW 3.994 +DiagSub::temp 3.994 +FFT::grid 1.424 +Chg::rho 1.424 +Chg::rho_save 1.424 +Pot::veff 1.424 +Pot::veff_smooth 1.424 +VNL::vkb 1.383 + ------------- < 1.0 MB has been ignored ---------------- + ---------------------------------------------------------- + + Start Time : Fri Sep 6 10:04:51 2024 + Finish Time : Fri Sep 6 10:05:51 2024 + Total Time : 0 h 1 mins 0 secs diff --git a/tests/abacus.spin/OUT.ABACUS/running_relax.log b/tests/abacus.spin/OUT.ABACUS/running_relax.log new file mode 100644 index 000000000..d94c8f892 --- /dev/null +++ b/tests/abacus.spin/OUT.ABACUS/running_relax.log @@ -0,0 +1,1002 @@ + + ABACUS v3.7.1 + + Atomic-orbital Based Ab-initio Computation at UStc + + Website: http://abacus.ustc.edu.cn/ + Documentation: https://abacus.deepmodeling.com/ + Repository: https://github.com/abacusmodeling/abacus-develop + https://github.com/deepmodeling/abacus-develop + Commit: 8443c42b5 (Thu Sep 5 14:19:05 2024 +0800) + + Start Time is Fri Sep 6 09:29:43 2024 + + ------------------------------------------------------------------------------------ + + READING GENERAL INFORMATION + global_out_dir = OUT.spin/ + global_in_card = INPUT + pseudo_dir = ./ + orbital_dir = ./ + DRANK = 1 + DSIZE = 1 + DCOLOR = 1 + GRANK = 1 + GSIZE = 1 + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading atom information in unitcell: | + | From the input file and the structure file we know the number of | + | different elments in this unitcell, then we list the detail | + | information for each element, especially the zeta and polar atomic | + | orbital number for each element. The total atom number is counted. | + | We calculate the nearest atom distance for each atom and show the | + | Cartesian and Direct coordinates for each atom. We list the file | + | address for atomic orbitals. The volume and the lattice vectors | + | in real and reciprocal space is also shown. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + READING UNITCELL INFORMATION + ntype = 1 + lattice constant (Bohr) = 1.88028 + lattice constant (Angstrom) = 0.995 + + READING ATOM TYPE 1 + atom label = Fe + L=0, number of zeta = 4 + L=1, number of zeta = 2 + L=2, number of zeta = 2 + L=3, number of zeta = 1 + number of atom for this type = 2 + magnetization of element 1 = [ 1.25, 1.25, 1.25 ] + + TOTAL ATOM NUMBER = 2 +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.0000000000 0.0000000000 0.0000000000 2.1651 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000000000 0.5000000000 0.5000000000 2.1651 0.0000000000 0.0000000000 0.0000000000 + + + + Volume (Bohr^3) = 150.259 + Volume (A^3) = 22.266 + + Lattice vectors: (Cartesian coordinate: in unit of a_0) + +2.82743 +0 +0 + +0 +2.82743 +0 + +0 +0 +2.82743 + Reciprocal vectors: (Cartesian coordinate: in unit of 2 pi/a_0) + +0.353679 -0 +0 + -0 +0.353679 -0 + +0 -0 +0.353679 + The esolver type has been set to : ksdft_pw + + RUNNING WITH DEVICE : CPU / Intel(R) Xeon(R) Platinum + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading pseudopotentials files: | + | The pseudopotential file is in UPF format. The 'NC' indicates that | + | the type of pseudopotential is 'norm conserving'. Functional of | + | exchange and correlation is decided by 4 given parameters in UPF | + | file. We also read in the 'core correction' if there exists. | + | Also we can read the valence electrons number and the maximal | + | angular momentum used in this pseudopotential. We also read in the | + | trail wave function, trail atomic density and local-pseudopotential| + | on logrithmic grid. The non-local pseudopotential projector is also| + | read in if there is any. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + PAO radial cut off (Bohr) = 15 + + Read in pseudopotential file is Fe.upf + pseudopotential type = NC + exchange-correlation functional = PBE + nonlocal core correction = 1 + valence electrons = 16 + lmax = 2 + number of zeta = 4 + number of projectors = 6 + L of projector = 0 + L of projector = 0 + L of projector = 1 + L of projector = 1 + L of projector = 2 + L of projector = 2 + initial pseudo atomic orbital number = 40 + NLOCAL = 108 + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + Warning: the number of valence electrons in pseudopotential > 8 for Fe: [Ar] 3d6 4s2 + Pseudopotentials with additional electrons can yield (more) accurate outcomes, but may be less efficient. + If you're confident that your chosen pseudopotential is appropriate, you can safely ignore this warning. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of charge/potential: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane waves | + | is 'npw' in each processor. | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP THE PLANE WAVE BASIS + energy cutoff for charge/potential (unit:Ry) = 400 + fft grid for charge/potential = [ 36, 36, 36 ] + fft grid division = [ 1, 1, 1 ] + big fft grid for charge/potential = [ 36, 36, 36 ] + nbxx = 46656 + nrxx = 46656 + + SETUP PLANE WAVES FOR CHARGE/POTENTIAL + number of plane waves = 20341 + number of sticks = 885 + + PARALLEL PW FOR CHARGE/POTENTIAL + PROC COLUMNS(POT) PW + 1 885 20341 + --------------- sum ------------------- + 1 885 20341 + number of |g| = 241 + max |g| = 35.7753 + min |g| = 0 + +----------- Double Check Mixing Parameters Begin ------------ +mixing_type: broyden +mixing_beta: 0.4 +mixing_gg0: 1 +mixing_gg0_min: 0.1 +mixing_beta_mag: 1.6 +mixing_gg0_mag: 0 +mixing_ndim: 8 +----------- Double Check Mixing Parameters End ------------ + + SETUP THE ELECTRONS NUMBER + electron number of element Fe = 16 + total electron number of element Fe = 32 + AUTOSET number of electrons: = 32 + DONE : SETUP UNITCELL Time : 0.0957571 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup K-points | + | We setup the k-points according to input parameters. | + | The reduced k-points are set according to symmetry operations. | + | We treat the spin as another set of k-points. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP K-POINTS + nspin = 4 + Input type of k points = Monkhorst-Pack(Gamma) + nkstot = 1 + nkstot_ibz = 1 +K-POINTS REDUCTION ACCORDING TO SYMMETRY + IBZ DIRECT_X DIRECT_Y DIRECT_Z WEIGHT ibz2bz + 1 0.00000000 0.00000000 0.00000000 1.0000 0 + + nkstot now = 1 +K-POINTS DIRECT COORDINATES + KPOINTS DIRECT_X DIRECT_Y DIRECT_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + + k-point number in this process = 1 + minimum distributed K point number = 1 + +K-POINTS CARTESIAN COORDINATES + KPOINTS CARTESIAN_X CARTESIAN_Y CARTESIAN_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + +K-POINTS DIRECT COORDINATES + KPOINTS DIRECT_X DIRECT_Y DIRECT_Z WEIGHT + 1 0.00000000 0.00000000 0.00000000 1.0000 + + DONE : INIT K-POINTS Time : 0.105664 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of wave functions: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane wave of | + | each k-point is 'npwk[ik]' in each processor | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP PLANE WAVES FOR WAVE FUNCTIONS + energy cutoff for wavefunc (unit:Ry) = 100 + fft grid for wave functions = [ 36, 36, 36 ] + number of plane waves = 2517 + number of sticks = 221 + + PARALLEL PW FOR WAVE FUNCTIONS + PROC COLUMNS(POT) PW + 1 221 2517 + --------------- sum ------------------- + 1 221 2517 + DONE : INIT PLANEWAVE Time : 0.106715 (SEC) + + occupied bands = 16 + NBANDS = 52 + + SETUP NONLOCAL PSEUDOPOTENTIALS IN PLANE WAVE BASIS + Fe non-local projectors: + projector 1 L=0 + projector 2 L=0 + projector 3 L=1 + projector 4 L=1 + projector 5 L=2 + projector 6 L=2 + TOTAL NUMBER OF NONLOCAL PROJECTORS = 36 + DONE : LOCAL POTENTIAL Time : 0.122677 (SEC) + + + Init Non-Local PseudoPotential table : + Init Non-Local-Pseudopotential done. + DONE : NON-LOCAL POTENTIAL Time : 0.153353 (SEC) + + npwx = 2517 + + Make real space PAO into reciprocal space. + max mesh points in Pseudopotential = 1425 + dq(describe PAO in reciprocal space) = 0.01 + max q = 1204 + + number of pseudo atomic orbitals for Fe is 4 +WARNING: norm of atomic wavefunction # 2 of atomic type Fe is 0.999981, renormalized +WARNING: norm of atomic wavefunction # 3 of atomic type Fe is 0.999997, renormalized + DONE : INIT BASIS Time : 0.325415 (SEC) + + + ------------------------------------------- + STEP OF RELAXATION : 1 + ------------------------------------------- + init_chg = atomic + DONE : INIT SCF Time : 0.524608 (SEC) + + + PW ALGORITHM --------------- ION= 1 ELEC= 1-------------------------------- +total magnetism (Bohr mag/cell) 2.30943 2.30938 2.30941 + absolute magnetism (Bohr mag/cell) = 4.01976 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.0686869 + Origin diag_ethr = 0.01 + New diag_ethr = 0.000214646 +total magnetism (Bohr mag/cell) 2.30943 2.30937 2.3094 + absolute magnetism (Bohr mag/cell) = 4.01964 + + Density error is 0.0548949686243 + Error Threshold = 0.000214646406708 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6632803550 -6825.4790901992 + E_Harris -501.6647758269 -6825.4994371390 + E_Fermi 1.4575316668 19.8307356840 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 2-------------------------------- +total magnetism (Bohr mag/cell) 2.3094424965 2.30934448798 2.30941621651 + absolute magnetism (Bohr mag/cell) = 4.13707180938 + + Density error is 0.00986449919003 + Error Threshold = 0.000171546776951 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6774595966 -6825.6720086784 + E_Harris -499.7039503033 -6798.8210372331 + E_Fermi 1.4964230898 20.3598806394 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 3-------------------------------- +total magnetism (Bohr mag/cell) 2.30944490813 2.30935345105 2.30940487564 + absolute magnetism (Bohr mag/cell) = 4.08853707061 + + Density error is 0.00240445773415 + Error Threshold = 3.08265599688e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6784060189 -6825.6848854146 + E_Harris -501.4802459250 -6822.9887790210 + E_Fermi 1.4994551309 20.4011336751 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 4-------------------------------- +total magnetism (Bohr mag/cell) 2.30944724752 2.30935862214 2.30939736766 + absolute magnetism (Bohr mag/cell) = 4.08848804651 + + Density error is 0.00057214611471 + Error Threshold = 7.51393041921e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6784787714 -6825.6858752634 + E_KS(sigma->0) -501.6746222162 -6825.6334041381 + E_Harris -501.6738375513 -6825.6227282240 + E_band -27.9117558414 -379.7589206280 + E_one_elec -203.4207485774 -2767.6812720784 + E_Hartree 123.6718684724 1682.6420935310 + E_xc -71.4390193374 -971.9777225215 + E_Ewald -350.4828662186 -4768.5640319440 + E_entropy(-TS) -0.0077131104 -0.1049422506 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.5017611709 20.4325089589 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe 0.0000000000 0.0000000000 0.0000000000 + Fe 0.0000000000 0.0000000000 0.0000000000 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1149 0.0010 0.0010 0.0010 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5931 1.1679 1.1678 1.1678 + Sum 13.7051 1.1691 1.1690 1.1690 +Fe2 + s 1.1150 0.0010 0.0010 0.0010 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5959 1.1671 1.1671 1.1672 + Sum 13.7079 1.1683 1.1683 1.1684 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.1690981855 1.1689596529 1.1689548475 + Fe 1.1682782547 1.1683271615 1.1683689897 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.6858753 eV + EFERMI = 20.432508959 eV + + STATE ENERGY(eV) AND OCCUPATIONS NSPIN == 4 + 1/1 kpoint (Cartesian) = 0.0000 0.0000 0.0000 (2517 pws) + 1 -67.4569 1.00000 + 2 -67.2982 1.00000 + 3 -65.2976 1.00000 + 4 -65.1287 1.00000 + 5 -33.6978 1.00000 + 6 -33.6978 1.00000 + 7 -33.6978 1.00000 + 8 -33.3602 1.00000 + 9 -33.3602 1.00000 + 10 -33.3602 1.00000 + 11 -31.4558 1.00000 + 12 -31.4557 1.00000 + 13 -31.4553 1.00000 + 14 -31.0894 1.00000 + 15 -31.0892 1.00000 + 16 -31.0888 1.00000 + 17 10.4705 1.00000 + 18 10.6689 1.00000 + 19 14.7652 1.00000 + 20 14.7654 1.00000 + 21 16.3838 1.00000 + 22 16.3838 1.00000 + 23 17.7210 1.00000 + 24 17.7211 1.00000 + 25 17.7213 1.00000 + 26 19.1329 1.00000 + 27 19.1332 1.00000 + 28 19.5268 1.00000 + 29 19.5272 1.00000 + 30 19.5274 1.00000 + 31 20.3909 0.667123 + 32 20.3910 0.666801 + 33 20.3912 0.666076 + 34 21.6006 0.00000 + 35 21.6007 0.00000 + 36 22.5186 0.00000 + 37 22.5192 0.00000 + 38 22.5194 0.00000 + 39 29.2339 0.00000 + 40 29.2339 0.00000 + 41 29.2339 0.00000 + 42 29.4154 0.00000 + 43 29.4154 0.00000 + 44 29.4155 0.00000 + 45 35.3354 0.00000 + 46 35.3355 0.00000 + 47 36.5789 0.00000 + 48 36.5789 0.00000 + 49 40.4434 0.00000 + 50 41.3886 0.00000 + 51 43.5577 0.00000 + 52 43.5578 0.00000 + + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0000234480 0.0000848730 0.0003959639 + Fe2 0.0000234480 -0.0000848730 -0.0003959639 +------------------------------------------------------------------------------------------ + + + Relaxation is not converged yet! +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.9999995833 0.0000015084 0.0000070374 2.1651 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000004167 0.4999984916 0.4999929626 2.1651 0.0000000000 0.0000000000 0.0000000000 + + + + ------------------------------------------- + STEP OF RELAXATION : 2 + ------------------------------------------- + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + NEW-OLD atomic charge density approx. for the potential ! + DONE : INIT SCF Time : 4.144735 (SEC) + + + PW ALGORITHM --------------- ION= 2 ELEC= 1-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000 ; where current threshold is: 0.000008 . +total magnetism (Bohr mag/cell) 2.460713 2.460629 2.460667 + absolute magnetism (Bohr mag/cell) = 4.354773 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.320000 > DRHO=0.001904 + Origin diag_ethr = 0.010000 + New diag_ethr = 0.000006 +total magnetism (Bohr mag/cell) 2.460685 2.460607 2.460642 + absolute magnetism (Bohr mag/cell) = 4.361930 + + Density error is 0.001992966717 + Error Threshold = 0.000005950543 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6717345462 -6825.5941153720 + E_Harris -501.6715923037 -6825.5921800627 + E_Fermi 1.4766962002 20.0914825374 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 2-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000005950543 . +total magnetism (Bohr mag/cell) 2.454388903679 2.454380662451 2.454379655944 + absolute magnetism (Bohr mag/cell) = 4.361912797650 + + Density error is 0.009228272161 + Error Threshold = 0.000006228021 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6713440630 -6825.5888025749 + E_Harris -501.5133874565 -6823.4396926906 + E_Fermi 1.4801385565 20.1383181977 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 3-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000006228021 . +total magnetism (Bohr mag/cell) 2.455337730187 2.455339212147 2.455339333866 + absolute magnetism (Bohr mag/cell) = 4.362219771057 + + Density error is 0.002195963526 + Error Threshold = 0.000006228021 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6723554230 -6825.6025628342 + E_Harris -501.6387445550 -6825.1452635146 + E_Fermi 1.4799798703 20.1361591613 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 2 ELEC= 4-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000006228021 . +total magnetism (Bohr mag/cell) 2.455780448000 2.455781001768 2.455780765168 + absolute magnetism (Bohr mag/cell) = 4.361708226902 + + Density error is 0.000005361548 + Error Threshold = 0.000006228021 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6724951355 -6825.6044637205 + E_KS(sigma->0) -501.6679025517 -6825.5419784114 + E_Harris -501.6617290453 -6825.4579835487 + E_band -27.8843141296 -379.3855569848 + E_one_elec -203.5744655302 -2769.7726985160 + E_Hartree 123.7850811379 1684.1824308678 + E_xc -71.4835967872 -972.5842298408 + E_Ewald -350.4828661766 -4768.5640313736 + E_entropy(-TS) -0.0091851677 -0.1249706181 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4799376237 20.1355843666 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.1673462642 -0.1673537756 -0.1673561712 + Fe -0.1683646747 -0.1683589722 -0.1683562492 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5877 1.2479 1.2479 1.2479 + Sum 13.6995 1.2501 1.2501 1.2500 +Fe2 + s 1.1148 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5911 1.2480 1.2480 1.2480 + Sum 13.7029 1.2502 1.2502 1.2502 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.2500714313 1.2500616663 1.2500458747 + Fe 1.2501576398 1.2501678047 1.2501834374 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.60446372048 eV + EFERMI = 20.13558436665 eV + + STATE ENERGY(eV) AND OCCUPATIONS NSPIN == 4 + 1/1 kpoint (Cartesian) = 0.00000 0.00000 0.00000 (2517 pws) + 1 -67.494313 1.000000 + 2 -67.340218 1.000000 + 3 -65.146260 1.000000 + 4 -64.972269 1.000000 + 5 -34.011284 1.000000 + 6 -34.011263 1.000000 + 7 -34.011242 1.000000 + 8 -33.673639 1.000000 + 9 -33.673617 1.000000 + 10 -33.673596 1.000000 + 11 -31.014754 1.000000 + 12 -31.014713 1.000000 + 13 -31.014689 1.000000 + 14 -30.647472 1.000000 + 15 -30.647431 1.000000 + 16 -30.647407 1.000000 + 17 10.202179 1.000000 + 18 10.967145 1.000000 + 19 14.534082 1.000000 + 20 14.534103 1.000000 + 21 16.670113 1.000000 + 22 16.670140 1.000000 + 23 17.413528 1.000000 + 24 17.413556 1.000000 + 25 17.413589 1.000000 + 26 18.850839 1.000000 + 27 18.850854 1.000000 + 28 19.969576 0.957785 + 29 19.969617 0.957746 + 30 19.969666 0.957700 + 31 20.082615 0.709038 + 32 20.082645 0.708930 + 33 20.082682 0.708801 + 34 21.999005 0.000000 + 35 21.999021 0.000000 + 36 22.978862 0.000000 + 37 22.978908 0.000000 + 38 22.978962 0.000000 + 39 29.262993 0.000000 + 40 29.263007 0.000000 + 41 29.263018 0.000000 + 42 29.450239 0.000000 + 43 29.450247 0.000000 + 44 29.450271 0.000000 + 45 35.322294 0.000000 + 46 35.322339 0.000000 + 47 36.677233 0.000000 + 48 36.677283 0.000000 + 49 40.233768 0.000000 + 50 41.594113 0.000000 + 51 43.613799 0.000000 + 52 43.613882 0.000000 + + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 0.0000423260 0.0001601470 0.0005255426 + Fe2 -0.0000423260 -0.0001601470 -0.0005255426 +------------------------------------------------------------------------------------------ + + + Relaxation is not converged yet! +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.9999983331 0.0000060337 0.0000281496 2.1651 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000016669 0.4999939663 0.4999718504 2.1651 0.0000000000 0.0000000000 0.0000000000 + + + + ------------------------------------------- + STEP OF RELAXATION : 3 + ------------------------------------------- + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + first order charge density extrapolation ! + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + Find the file, try to read charge from file. + read in fermi energy = 0.000000 + DONE : INIT SCF Time : 19.338131 (SEC) + + + PW ALGORITHM --------------- ION= 3 ELEC= 1-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000 ; where current threshold is: 0.000006 . +total magnetism (Bohr mag/cell) 2.455075 2.455068 2.455069 + absolute magnetism (Bohr mag/cell) = 4.365921 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.320000 > DRHO=0.002000 + Origin diag_ethr = 0.010000 + New diag_ethr = 0.000006 +total magnetism (Bohr mag/cell) 2.455050 2.455043 2.455045 + absolute magnetism (Bohr mag/cell) = 4.365458 + + Density error is 0.002011456982 + Error Threshold = 0.000006249033 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6717775158 -6825.5947000038 + E_Harris -501.6716068292 -6825.5923776932 + E_Fermi 1.4833035949 20.1813807543 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 2-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000006249033 . +total magnetism (Bohr mag/cell) 2.457174616872 2.457187849929 2.457184529753 + absolute magnetism (Bohr mag/cell) = 4.361364469883 + + Density error is 0.008790489237 + Error Threshold = 0.000006285803 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6713261044 -6825.5885582359 + E_Harris -501.8313917187 -6827.7663626437 + E_Fermi 1.4802224904 20.1394601766 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 3-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000006285803 . +total magnetism (Bohr mag/cell) 2.455913724950 2.455916535345 2.455916133793 + absolute magnetism (Bohr mag/cell) = 4.360083340583 + + Density error is 0.002354066573 + Error Threshold = 0.000006285803 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6723623430 -6825.6026569852 + E_Harris -501.7081536771 -6826.0896230689 + E_Fermi 1.4800610576 20.1372637709 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 3 ELEC= 4-------------------------------- +Average iterative diagonalization steps for k-points 0 is: 0.000000000000 ; where current threshold is: 0.000006285803 . +total magnetism (Bohr mag/cell) 2.455552549274 2.455552935684 2.455553065202 + absolute magnetism (Bohr mag/cell) = 4.360588456959 + + Density error is 0.000003562109 + Error Threshold = 0.000006285803 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.6725119610 -6825.6046926422 + E_KS(sigma->0) -501.6679202282 -6825.5422189132 + E_Harris -501.6917485490 -6825.8664198503 + E_band -27.8833131578 -379.3719380647 + E_one_elec -203.5627195010 -2769.6128855894 + E_Hartree 123.7718909794 1684.0029695549 + E_xc -71.4811134180 -972.5504418684 + E_Ewald -350.4828655476 -4768.5640228156 + E_entropy(-TS) -0.0091834655 -0.1249474581 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4799197855 20.1353416661 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.1657340600 -0.1657462694 -0.1657444988 + Fe -0.1661948902 -0.1661794752 -0.1661827215 +------------------------------------------------------------------------------------------- + + +------------------------------------------------------------------------------------------- +Orbital Charge Analysis Charge Mag(x) Mag(y) Mag(z) +------------------------------------------------------------------------------------------- +Fe1 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5891 1.2477 1.2476 1.2476 + Sum 13.7008 1.2498 1.2498 1.2498 +Fe2 + s 1.1147 0.0019 0.0019 0.0019 + p 5.9971 0.0002 0.0002 0.0002 + d 6.5897 1.2478 1.2479 1.2479 + Sum 13.7015 1.2500 1.2500 1.2500 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe 1.2498499353 1.2497710829 1.2497831345 + Fe 1.2499653291 1.2500441039 1.2500320770 +------------------------------------------------------------------------------------------- + + + charge density convergence is achieved + final etot is -6825.60469264220 eV + EFERMI = 20.13534166609 eV + + STATE ENERGY(eV) AND OCCUPATIONS NSPIN == 4 + 1/1 kpoint (Cartesian) = 0.00000 0.00000 0.00000 (2517 pws) + 1 -67.494346 1.000000 + 2 -67.340195 1.000000 + 3 -65.142147 1.000000 + 4 -64.968232 1.000000 + 5 -34.009462 1.000000 + 6 -34.009434 1.000000 + 7 -34.009266 1.000000 + 8 -33.671810 1.000000 + 9 -33.671781 1.000000 + 10 -33.671615 1.000000 + 11 -31.015112 1.000000 + 12 -31.014434 1.000000 + 13 -31.014342 1.000000 + 14 -30.647876 1.000000 + 15 -30.647195 1.000000 + 16 -30.647103 1.000000 + 17 10.203611 1.000000 + 18 10.967020 1.000000 + 19 14.532886 1.000000 + 20 14.532987 1.000000 + 21 16.668995 1.000000 + 22 16.669002 1.000000 + 23 17.413224 1.000000 + 24 17.413591 1.000000 + 25 17.413900 1.000000 + 26 18.850000 1.000000 + 27 18.850124 1.000000 + 28 19.968700 0.958374 + 29 19.969266 0.957847 + 30 19.969947 0.957208 + 31 20.082043 0.710209 + 32 20.082447 0.708773 + 33 20.082779 0.707589 + 34 21.997966 0.000000 + 35 21.997988 0.000000 + 36 22.976716 0.000000 + 37 22.977326 0.000000 + 38 22.978087 0.000000 + 39 29.262086 0.000000 + 40 29.262096 0.000000 + 41 29.262190 0.000000 + 42 29.456009 0.000000 + 43 29.456271 0.000000 + 44 29.456319 0.000000 + 45 35.320363 0.000000 + 46 35.320446 0.000000 + 47 36.677678 0.000000 + 48 36.677685 0.000000 + 49 40.231928 0.000000 + 50 41.593535 0.000000 + 51 43.611156 0.000000 + 52 43.611230 0.000000 + + + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 0.0000917195 -0.0005088150 -0.0021920644 + Fe2 -0.0000917195 0.0005088150 0.0021920644 +------------------------------------------------------------------------------------------ + + + Relaxation is not converged yet! +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.9999984177 0.0000055644 0.0000261275 2.1651 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000015823 0.4999944356 0.4999738725 2.1651 0.0000000000 0.0000000000 0.0000000000 + + + + + -------------------------------------------- + !FINAL_ETOT_IS -6825.6046926421959142 eV + -------------------------------------------- + + +TIME STATISTICS +----------------------------------------------------------------------------- + CLASS_NAME NAME TIME/s CALLS AVG/s PER/% +----------------------------------------------------------------------------- + total 38.86 19 2.05 100.00 + Driver reading 0.02 1 0.02 0.05 + Input_Conv Convert 0.00 1 0.00 0.00 + Driver driver_line 38.84 1 38.84 99.95 + UnitCell check_tau 0.00 1 0.00 0.00 + PW_Basis_Sup setuptransform 0.00 1 0.00 0.01 + PW_Basis_Sup distributeg 0.00 1 0.00 0.00 + mymath heapsort 0.00 6 0.00 0.01 + PW_Basis_K setuptransform 0.00 1 0.00 0.00 + PW_Basis_K distributeg 0.00 1 0.00 0.00 + PW_Basis setup_struc_factor 0.00 3 0.00 0.01 + ppcell_vnl init 0.00 1 0.00 0.01 + ppcell_vl init_vloc 0.01 1 0.01 0.01 + ppcell_vnl init_vnl 0.03 1 0.03 0.08 + WF_atomic init_at_1 0.17 1 0.17 0.44 + wavefunc wfcinit 0.00 1 0.00 0.00 + Ions opt_ions 38.53 1 38.53 99.14 + ESolver_KS_PW runner 38.20 3 12.73 98.28 + H_Ewald_pw compute_ewald 0.00 3 0.00 0.01 + Charge set_rho_core 0.02 3 0.01 0.06 + PW_Basis_Sup recip2real 0.22 369 0.00 0.57 + PW_Basis_Sup gathers_scatterp 0.03 369 0.00 0.08 + Charge atomic_rho 0.07 6 0.01 0.18 + Potential init_pot 0.21 3 0.07 0.54 + Potential update_from_charge 1.03 15 0.07 2.64 + Potential cal_fixed_v 0.00 3 0.00 0.01 + PotLocal cal_fixed_v 0.00 3 0.00 0.01 + Potential cal_v_eff 1.02 15 0.07 2.62 + H_Hartree_pw v_hartree 0.02 15 0.00 0.06 + PW_Basis_Sup real2recip 0.25 486 0.00 0.64 + PW_Basis_Sup gatherp_scatters 0.02 486 0.00 0.06 + PotXC cal_v_eff 0.99 15 0.07 2.54 + XC_Functional v_xc 1.18 18 0.07 3.04 + Potential interpolate_vrs 0.01 15 0.00 0.01 + OnsiteProj cubspl_tabulate 0.09 1 0.09 0.24 + Charge_Mixing init_mixing 0.00 3 0.00 0.01 + ESolver_KS_PW hamilt2density 7.41 15 0.49 19.07 + HSolverPW solve 11.45 23 0.50 29.46 + pp_cell_vnl getvnl 0.57 213 0.00 1.46 + Structure_Factor get_sk 0.06 221 0.00 0.16 + OnsiteProj getvnl 0.00 213 0.00 0.00 + OnsiteProj tabulate_atomic 0.00 239 0.00 0.00 + WF_atomic atomic_wfc 0.01 1 0.01 0.01 + DiagoIterAssist diagH_subspace_init 0.14 1 0.14 0.35 + Operator hPsi 31.99 2952 0.01 82.32 + Operator EkineticPW 0.15 2952 0.00 0.39 + Operator VeffPW 28.61 2952 0.01 73.61 + PW_Basis_K recip2real 8.33 28782 0.00 21.42 + PW_Basis_K gathers_scatterp 1.23 28782 0.00 3.16 + PW_Basis_K real2recip 7.66 27222 0.00 19.72 + PW_Basis_K gatherp_scatters 0.58 27222 0.00 1.49 + Operator NonlocalPW 2.14 2952 0.00 5.51 + Nonlocal add_nonlocal_pp 1.30 2952 0.00 3.35 + Operator OnsiteProjPW 1.09 2952 0.00 2.79 + OnsiteProj overlap 0.55 2978 0.00 1.42 + FS_Nonlocal_tools cal_becp 0.56 2984 0.00 1.43 + OnsiteProj add_onsite_proj 0.47 2952 0.00 1.20 + DiagoIterAssist diagH_LAPACK 0.23 209 0.00 0.59 + DiagoCG diag_once 8.26 23 0.36 21.24 + DiagoCG_New spsi_func 0.07 5486 0.00 0.17 + DiagoCG_New hpsi_func 7.20 2743 0.00 18.52 + ElecStatePW psiToRho 0.63 15 0.04 1.62 + Charge_Mixing get_drho 0.07 15 0.00 0.19 + Charge_Mixing inner_product_recip_rho 0.00 15 0.00 0.01 + Charge mix_rho 0.05 9 0.01 0.14 + Charge Broyden_mixing 0.01 9 0.00 0.03 + DiagoIterAssist diagH_subspace 2.30 18 0.13 5.92 + Charge_Mixing inner_product_recip_hartree 0.00 18 0.00 0.01 + OnsiteProj cal_occupation 0.00 3 0.00 0.01 + Forces cal_force_loc 0.01 3 0.00 0.02 + Forces cal_force_ew 0.00 3 0.00 0.01 + Forces cal_force_nl 0.03 3 0.01 0.07 + FS_Nonlocal_tools cal_dbecp_f 0.03 18 0.00 0.07 + Forces cal_force_onsite 0.01 3 0.00 0.04 + Forces cal_force_cc 0.22 3 0.07 0.57 + Forces cal_force_scc 0.02 3 0.01 0.06 + SpinConstrain cal_mw_from_lambda 28.58 198 0.14 73.53 + DiagoIterAssist diag_responce 23.97 190 0.13 61.69 + ModuleIO write_istate_info 0.01 1 0.01 0.02 +----------------------------------------------------------------------------- + + + NAME-------------------------|MEMORY(MB)-------- + total 24.4333 + Psi_PW 3.9943 + DiagSub::temp 3.9943 + FFT::grid 1.4238 + Chg::rho 1.4238 + Chg::rho_save 1.4238 + Pot::veff 1.4238 + Pot::veff_smooth 1.4238 + VNL::vkb 1.3826 + ------------- < 1.0 MB has been ignored ---------------- + ---------------------------------------------------------- + + Start Time : Fri Sep 6 09:29:43 2024 + Finish Time : Fri Sep 6 09:30:22 2024 + Total Time : 0 h 0 mins 39 secs diff --git a/tests/abacus.spin/OUT.ABACUS/running_scf.log b/tests/abacus.spin/OUT.ABACUS/running_scf.log new file mode 100644 index 000000000..2e6e98cc8 --- /dev/null +++ b/tests/abacus.spin/OUT.ABACUS/running_scf.log @@ -0,0 +1,565 @@ + + ABACUS v3.7.1 + + Atomic-orbital Based Ab-initio Computation at UStc + + Website: http://abacus.ustc.edu.cn/ + Documentation: https://abacus.deepmodeling.com/ + Repository: https://github.com/abacusmodeling/abacus-develop + https://github.com/deepmodeling/abacus-develop + Commit: 1a7a3158b (Fri Aug 23 00:52:25 2024 +0800) + + Start Time is Fri Aug 23 16:06:02 2024 + + ------------------------------------------------------------------------------------ + + READING GENERAL INFORMATION + global_out_dir = OUT.ABACUS/ + global_in_card = INPUT + pseudo_dir = ./ + orbital_dir = ./ + DRANK = 1 + DSIZE = 16 + DCOLOR = 1 + GRANK = 1 + GSIZE = 1 + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading atom information in unitcell: | + | From the input file and the structure file we know the number of | + | different elments in this unitcell, then we list the detail | + | information for each element, especially the zeta and polar atomic | + | orbital number for each element. The total atom number is counted. | + | We calculate the nearest atom distance for each atom and show the | + | Cartesian and Direct coordinates for each atom. We list the file | + | address for atomic orbitals. The volume and the lattice vectors | + | in real and reciprocal space is also shown. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + READING UNITCELL INFORMATION + ntype = 1 + lattice constant (Bohr) = 1.88028 + lattice constant (Angstrom) = 0.995 + + READING ATOM TYPE 1 + atom label = Fe + L=0, number of zeta = 4 + L=1, number of zeta = 2 + L=2, number of zeta = 2 + L=3, number of zeta = 1 + number of atom for this type = 2 + magnetization of element 1 = [ 0, 0, 2.4 ] + + TOTAL ATOM NUMBER = 2 +DIRECT COORDINATES + atom x y z mag vx vy vz +taud_Fe1 0.0500000000 0.1000000000 0.1500000000 2.4000 0.0000000000 0.0000000000 0.0000000000 +taud_Fe2 0.5000000000 0.5000000000 0.5000000000 2.4000 0.0000000000 0.0000000000 0.0000000000 + + + + Volume (Bohr^3) = 150.259 + Volume (A^3) = 22.266 + + Lattice vectors: (Cartesian coordinate: in unit of a_0) + +2.82743 +0 +0 + +0 +2.82743 +0 + +0 +0 +2.82743 + Reciprocal vectors: (Cartesian coordinate: in unit of 2 pi/a_0) + +0.353679 -0 +0 + -0 +0.353679 -0 + +0 -0 +0.353679 + The esolver type has been set to : ksdft_pw + + RUNNING WITH DEVICE : CPU / Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Reading pseudopotentials files: | + | The pseudopotential file is in UPF format. The 'NC' indicates that | + | the type of pseudopotential is 'norm conserving'. Functional of | + | exchange and correlation is decided by 4 given parameters in UPF | + | file. We also read in the 'core correction' if there exists. | + | Also we can read the valence electrons number and the maximal | + | angular momentum used in this pseudopotential. We also read in the | + | trail wave function, trail atomic density and local-pseudopotential| + | on logrithmic grid. The non-local pseudopotential projector is also| + | read in if there is any. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + PAO radial cut off (Bohr) = 15 + + Read in pseudopotential file is Fe.upf + pseudopotential type = NC + exchange-correlation functional = PBE + nonlocal core correction = 1 + valence electrons = 16 + lmax = 2 + number of zeta = 6 + number of projectors = 10 + L of projector = 0 + L of projector = 0 + L of projector = 1 + L of projector = 1 + L of projector = 1 + L of projector = 1 + L of projector = 2 + L of projector = 2 + L of projector = 2 + L of projector = 2 + initial pseudo atomic orbital number = 40 + NLOCAL = 108 + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + Warning: the number of valence electrons in pseudopotential > 8 for Fe: [Ar] 3d6 4s2 + Pseudopotentials with additional electrons can yield (more) accurate outcomes, but may be less efficient. + If you're confident that your chosen pseudopotential is appropriate, you can safely ignore this warning. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of charge/potential: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane waves | + | is 'npw' in each processor. | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP THE PLANE WAVE BASIS + energy cutoff for charge/potential (unit:Ry) = 320 + fft grid for charge/potential = [ 32, 32, 32 ] + fft grid division = [ 1, 1, 1 ] + big fft grid for charge/potential = [ 32, 32, 32 ] + nbxx = 2048 + nrxx = 2048 + + SETUP PLANE WAVES FOR CHARGE/POTENTIAL + number of plane waves = 14531 + number of sticks = 725 + + PARALLEL PW FOR CHARGE/POTENTIAL + PROC COLUMNS(POT) PW + 1 45 909 + 2 45 909 + 3 46 908 + 4 46 908 + 5 45 909 + 6 45 909 + 7 45 909 + 8 45 909 + 9 45 909 + 10 46 908 + 11 46 908 + 12 46 908 + 13 45 907 + 14 45 907 + 15 45 907 + 16 45 907 + --------------- sum ------------------- + 16 725 14531 + number of |g| = 165 + max |g| = 28.6453 + min |g| = 0.500354 + +----------- Double Check Mixing Parameters Begin ------------ +mixing_type: broyden +mixing_beta: 0.4 +mixing_gg0: 1 +mixing_gg0_min: 0.1 +mixing_beta_mag: 1.6 +mixing_gg0_mag: 0 +mixing_ndim: 10 +----------- Double Check Mixing Parameters End ------------ + + SETUP THE ELECTRONS NUMBER + electron number of element Fe = 16 + total electron number of element Fe = 32 + AUTOSET number of electrons: = 32 + DONE : SETUP UNITCELL Time : 0.316237 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup K-points | + | We setup the k-points according to input parameters. | + | The reduced k-points are set according to symmetry operations. | + | We treat the spin as another set of k-points. | + | | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP K-POINTS + nspin = 4 + Input type of k points = Monkhorst-Pack(Gamma) + nkstot = 216 +K-POINTS DIRECT COORDINATES + KPOINTS DIRECT_X DIRECT_Y DIRECT_Z WEIGHT + + DONE : INIT K-POINTS Time : 0.376998 (SEC) + + + + + + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> + | | + | Setup plane waves of wave functions: | + | Use the energy cutoff and the lattice vectors to generate the | + | dimensions of FFT grid. The number of FFT grid on each processor | + | is 'nrxx'. The number of plane wave basis in reciprocal space is | + | different for charege/potential and wave functions. We also set | + | the 'sticks' for the parallel of FFT. The number of plane wave of | + | each k-point is 'npwk[ik]' in each processor | + <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< + + + + + + SETUP PLANE WAVES FOR WAVE FUNCTIONS + energy cutoff for wavefunc (unit:Ry) = 80 + fft grid for wave functions = [ 32, 32, 32 ] + number of plane waves = 3071 + number of sticks = 253 + + PARALLEL PW FOR WAVE FUNCTIONS + PROC COLUMNS(POT) PW + 1 16 192 + 2 16 192 + 3 16 192 + 4 16 192 + 5 15 191 + 6 15 191 + 7 16 194 + 8 16 192 + 9 16 192 + 10 16 192 + 11 16 192 + 12 16 192 + 13 16 192 + 14 16 192 + 15 16 192 + 16 15 191 + --------------- sum ------------------- + 16 253 3071 + DONE : INIT PLANEWAVE Time : 0.380345 (SEC) + + occupied bands = 32 + NBANDS = 52 + + SETUP NONLOCAL PSEUDOPOTENTIALS IN PLANE WAVE BASIS + Fe non-local projectors: + projector 1 L=0 + projector 2 L=0 + projector 3 L=1 + projector 4 L=1 + projector 5 L=1 + projector 6 L=1 + projector 7 L=2 + projector 8 L=2 + projector 9 L=2 + projector 10 L=2 + TOTAL NUMBER OF NONLOCAL PROJECTORS = 68 + DONE : LOCAL POTENTIAL Time : 0.40963 (SEC) + + + Init Non-Local PseudoPotential table : + Init Non-Local-Pseudopotential done. + DONE : NON-LOCAL POTENTIAL Time : 0.443773 (SEC) + + npwx = 128 + + Warning_Memory_Consuming allocated: Psi_PW 43.875 MB + + Make real space PAO into reciprocal space. + max mesh points in Pseudopotential = 1425 + dq(describe PAO in reciprocal space) = 0.01 + max q = 1078 + + number of pseudo atomic orbitals for Fe is 6 + DONE : INIT BASIS Time : 0.620862 (SEC) + + + ------------------------------------------- + SELF-CONSISTENT + ------------------------------------------- + init_chg = atomic + DONE : INIT SCF Time : 0.761759 (SEC) + + + PW ALGORITHM --------------- ION= 1 ELEC= 1-------------------------------- +total magnetism (Bohr mag/cell) -8.56154e-05 -3.16838e-05 3.87672 + absolute magnetism (Bohr mag/cell) = 3.90219 + Notice: Threshold on eigenvalues was too large. + hsover_error=0.32 > DRHO=0.0810864 + Origin diag_ethr = 0.01 + New diag_ethr = 0.000253395 +total magnetism (Bohr mag/cell) -9.09654e-05 -3.00029e-05 3.87658 + absolute magnetism (Bohr mag/cell) = 3.90286 + + Density error is 0.0818013187196 + Error Threshold = 0.000253394954616 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.1638820263 -6818.6844273569 + E_Harris -501.1650591987 -6818.7004436094 + E_Fermi 1.4203911993 19.3254136999 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 2-------------------------------- +total magnetism (Bohr mag/cell) -2.92622585913e-05 -0.000266812474323 3.65800660509 + absolute magnetism (Bohr mag/cell) = 3.88387266047 + + Density error is 0.0165562104235 + Error Threshold = 0.000255629120999 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.1785311471 -6818.8837388713 + E_Harris -501.4729927600 -6822.8900946492 + E_Fermi 1.4123735299 19.2163277107 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 3-------------------------------- +total magnetism (Bohr mag/cell) -1.41288005953e-05 -0.000388528787066 3.72548472333 + absolute magnetism (Bohr mag/cell) = 3.91023806289 + + Density error is 0.00318633115585 + Error Threshold = 5.17381575736e-05 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.1785047719 -6818.8833800180 + E_Harris -501.0742053019 -6817.4643129270 + E_Fermi 1.4117399370 19.2077072372 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 4-------------------------------- +total magnetism (Bohr mag/cell) 2.26526732328e-05 -0.000450436470697 3.73775099313 + absolute magnetism (Bohr mag/cell) = 3.92308219614 + + Density error is 0.000165938860835 + Error Threshold = 9.95728486202e-06 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.1804562269 -6818.9099309251 + E_Harris -501.0912756169 -6817.6965664782 + E_Fermi 1.4131895976 19.2274308815 +---------------------------------------------------------- + + + PW ALGORITHM --------------- ION= 1 ELEC= 5-------------------------------- + +total magnetism (Bohr mag/cell) -0.000682480084963 -0.000407948602903 4.47635324671 + absolute magnetism (Bohr mag/cell) = 4.82248432181 + + Density error is 6.61858307885e-09 + Error Threshold = 5.40730613116e-10 +---------------------------------------------------------- + Energy Rydberg eV +---------------------------------------------------------- + E_KohnSham -501.1664531630 -6818.7194094666 + E_KS(sigma->0) -501.1658847659 -6818.7116760274 + E_Harris -501.1680065331 -6818.7405441510 + E_band -30.1701507306 -410.4859594555 + E_one_elec -214.9321986489 -2924.3025852934 + E_Hartree 128.2299640744 1744.6581657467 + E_xc -71.3503189041 -970.7708912124 + E_Ewald -343.2422281761 -4670.0500974110 + E_entropy(-TS) -0.0011367942 -0.0154668785 + E_descf 0.0000000000 0.0000000000 + E_exx 0.0000000000 0.0000000000 + E_Fermi 1.4108073605 19.1950188828 +---------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Total Magnetism (uB) +------------------------------------------------------------------------------------------- + Fe -0.0000002724 -0.0000001728 2.4000001004 + Fe -0.0000003180 -0.0000002299 2.3999994597 +------------------------------------------------------------------------------------------- + +------------------------------------------------------------------------------------------- + Magnetic force (eV/uB) +------------------------------------------------------------------------------------------- + Fe -0.0000175013 -0.0000418680 -0.3669618965 + Fe -0.0000161517 -0.0000195198 -0.3669821632 +------------------------------------------------------------------------------------------- + +Charge and Mag of Atom 0 + Orbital 1 Charge: 1.99985926204 Mag: -8.50835272933e-09 -8.84955876115e-09 2.84869655853e-06 + Orbital 2 Charge: 5.99701367096 Mag: -2.18088393737e-07 -2.40618119919e-07 0.000105269162551 + Orbital 3 Charge: 6.37379729477 Mag: -4.581340875e-08 7.66548679323e-08 2.39989198254 +Sum of atom 0 is: 14.3706702278 -2.72410155216e-07 -1.72812810748e-07 2.4000001004 +Charge and Mag of Atom 1 + Orbital 1 Charge: 1.99985925962 Mag: -6.91586723071e-09 -8.93979594505e-09 2.85090960195e-06 + Orbital 2 Charge: 5.99701367924 Mag: -2.16539560943e-07 -2.55979271358e-07 0.000105265428294 + Orbital 3 Charge: 6.37381969542 Mag: -9.45758719447e-08 3.50118887944e-08 2.3998913434 +Sum of atom 1 is: 14.3706926343 -3.18031300118e-07 -2.29907178509e-07 2.39999945974 + + charge density convergence is achieved + final etot is -6818.7194095 eV + EFERMI = 19.195018883 eV + +------------------------------------------------------------------------------------------ + TOTAL-FORCE (eV/Angstrom) +------------------------------------------------------------------------------------------ + Fe1 -0.0000234480 0.0000848730 0.0003959639 + Fe2 0.0000234480 -0.0000848730 -0.0003959639 +------------------------------------------------------------------------------------------ + + -------------------------------------------- + !FINAL_ETOT_IS -6818.719409466637 eV + -------------------------------------------- + + +TIME STATISTICS +---------------------------------------------------------------------------- + CLASS_NAME NAME TIME/s CALLS AVG/s PER/% +---------------------------------------------------------------------------- + total 563.56 15 37.57 100.00 + Driver reading 0.11 1 0.11 0.02 + Input_Conv Convert 0.00 1 0.00 0.00 + Driver driver_line 563.45 1 563.45 99.98 + UnitCell check_tau 0.00 1 0.00 0.00 + PW_Basis_Sup setuptransform 0.06 1 0.06 0.01 + PW_Basis_Sup distributeg 0.00 1 0.00 0.00 + mymath heapsort 0.00 3 0.00 0.00 + PW_Basis_K setuptransform 0.00 1 0.00 0.00 + PW_Basis_K distributeg 0.00 1 0.00 0.00 + PW_Basis setup_struc_factor 0.00 1 0.00 0.00 + ppcell_vnl init 0.00 1 0.00 0.00 + ppcell_vl init_vloc 0.02 1 0.02 0.00 + ppcell_vnl init_vnl 0.03 1 0.03 0.01 + WF_atomic init_at_1 0.18 1 0.18 0.03 + wavefunc wfcinit 0.00 1 0.00 0.00 + Ions opt_ions 562.87 1 562.87 99.88 + ESolver_KS_PW runner 562.87 1 562.87 99.88 + H_Ewald_pw compute_ewald 0.00 1 0.00 0.00 + Charge set_rho_core 0.01 1 0.01 0.00 + PW_Basis_Sup recip2real 0.03 202 0.00 0.00 + PW_Basis_Sup gathers_scatterp 0.01 202 0.00 0.00 + Charge atomic_rho 0.00 1 0.00 0.00 + Potential init_pot 0.01 1 0.01 0.00 + Potential update_from_charge 0.07 13 0.01 0.01 + Potential cal_fixed_v 0.00 1 0.00 0.00 + PotLocal cal_fixed_v 0.00 1 0.00 0.00 + Potential cal_v_eff 0.06 13 0.00 0.01 + H_Hartree_pw v_hartree 0.00 13 0.00 0.00 + PW_Basis_Sup real2recip 0.02 247 0.00 0.00 + PW_Basis_Sup gatherp_scatters 0.02 247 0.00 0.00 + PotXC cal_v_eff 0.06 13 0.00 0.01 + XC_Functional v_xc 0.06 13 0.00 0.01 + Potential interpolate_vrs 0.00 13 0.00 0.00 + OnsiteProj init_k_stage0 0.08 1 0.08 0.01 + Charge_Mixing init_mixing 0.00 2 0.00 0.00 + ESolver_KS_PW hamilt2density 184.77 13 14.21 32.79 + HSolverPW solve 287.77 21 13.70 51.06 + pp_cell_vnl getvnl 4.21 21384 0.00 0.75 + Structure_Factor get_sk 2.26 492264 0.00 0.40 + OnsiteProj getvnl 3.45 21384 0.00 0.61 + OnsiteProj init_k 4.11 26136 0.00 0.73 + OnsiteProj init_k_stage1 1.73 26136 0.00 0.31 + OnsiteProj init_k_stage2 2.37 26136 0.00 0.42 + WF_atomic atomic_wfc 0.10 216 0.00 0.02 + DiagoDavid diag_mock 259.79 4536 0.06 46.10 + DiagoDavid first 83.93 4536 0.02 14.89 + David spsi_func 1.10 1075598 0.00 0.20 + DiagoDavid SchmidtOrth 14.54 537799 0.00 2.58 + David hpsi_func 149.60 14979 0.01 26.55 + Operator hPsi 396.41 31827 0.01 70.34 + Operator EkineticPW 2.03 31827 0.00 0.36 + Operator VeffPW 344.42 31827 0.01 61.12 + PW_Basis_K recip2real 183.20 3119822 0.00 32.51 + PW_Basis_K gathers_scatterp 160.47 3119822 0.00 28.47 + PW_Basis_K real2recip 155.75 2827790 0.00 27.64 + PW_Basis_K gatherp_scatters 136.28 2827790 0.00 24.18 + Operator NonlocalPW 42.43 31827 0.00 7.53 + Nonlocal add_nonlocal_pp 34.57 31827 0.00 6.13 + Operator OnsiteProjPW 7.38 31827 0.00 1.31 + OnsiteProj add_onsite_proj 7.35 31827 0.00 1.30 + OnsiteProj overlap 5.91 36579 0.00 1.05 + DiagoDavid cal_elem 35.38 14979 0.00 6.28 + DiagoDavid diag_zhegvx 51.18 14979 0.00 9.08 + DiagoDavid cal_grad 101.08 10443 0.01 17.94 + DiagoDavid check_update 0.01 10443 0.00 0.00 + DiagoDavid last 1.75 4536 0.00 0.31 + ElecStatePW psiToRho 18.60 13 1.43 3.30 + Charge_Mixing get_drho 0.01 13 0.00 0.00 + Charge_Mixing inner_product_recip_rho 0.00 13 0.00 0.00 + Charge mix_rho 0.01 10 0.00 0.00 + Charge Broyden_mixing 0.01 10 0.00 0.00 + Charge_Mixing inner_product_recip_hartree 0.00 48 0.00 0.00 + SpinConstrain cal_mw_from_lambda 377.05 86 4.38 66.90 + DiagoIterAssist diag_responce 266.63 16848 0.02 47.31 + DiagoIterAssist diagH_LAPACK 12.16 16848 0.00 2.16 + OnsiteProj cal_occupation 0.06 1 0.06 0.01 + ModuleIO write_istate_info 0.07 1 0.07 0.01 +---------------------------------------------------------------------------- + + + NAME-------------------------|MEMORY(MB)-------- + total 786.3 + Psi_PW 668.8 + DAV::basis 12.38 + DAV::hpsi 12.38 + DAV::spsi 12.38 + DAV::hcc 10.56 + DAV::scc 10.56 + DAV::vcc 10.56 + MTransOp 10.56 + PW_B_K::gcar 9.645 + PW_B_K::gk2 3.215 + DiagSub::temp 3.096 + VNL::tab 2.632 + VNL::vkb 2.024 + Nonlocal::becp 1.727 + Nonlocal::ps 1.727 + VNL::tab_at 1.579 + FFT::grid 1.000 + Chg::rho 1.000 + Chg::rho_save 1.000 + Pot::veff 1.000 + Pot::veff_smooth 1.000 + ------------- < 1.0 MB has been ignored ---------------- + ---------------------------------------------------------- + + Start Time : Fri Aug 23 16:06:02 2024 + Finish Time : Fri Aug 23 16:15:04 2024 + Total Time : 0 h 9 mins 2 secs diff --git a/tests/abacus.spin/STRU b/tests/abacus.spin/STRU new file mode 100644 index 000000000..6ec77f1af --- /dev/null +++ b/tests/abacus.spin/STRU @@ -0,0 +1,21 @@ +ATOMIC_SPECIES +Fe 55.845 Fe.upf + +NUMERICAL_ORBITAL +Fe_gga_10au_200.0Ry_4s2p2d1f.orb + +LATTICE_CONSTANT +1.880277359 +LATTICE_VECTORS + 2.8274254848 0.0000000000 0.0000000000 #latvec1 + 0.0000000000 2.8274254848 0.0000000000 #latvec2 + 0.0000000000 0.0000000000 2.8274254848 #latvec3 + +ATOMIC_POSITIONS +Direct + +Fe #label +1 #magnetism +2 #number of atoms + 0.0500000000 0.100000000 0.1500000000 mag 0 0 2.4 sc 1 1 1 + 0.5000000000 0.5000000000 0.5000000000 mag 0 0 2.4 sc 1 1 1 diff --git a/tests/poscars/POSCAR.SiC.partpert b/tests/poscars/POSCAR.SiC.partpert new file mode 100644 index 000000000..859de7ca3 --- /dev/null +++ b/tests/poscars/POSCAR.SiC.partpert @@ -0,0 +1,16 @@ +C4 Si4 +1.0 +4.0354487481064565e+00 1.1027270790560616e-17 2.5642993008475204e-17 +2.0693526054669642e-01 4.1066892997402196e+00 -8.6715682899078028e-18 +4.2891472979598610e-01 5.5796885749827474e-01 4.1100061517204542e+00 +C Si +4 4 +Cartesian + 0.03122504 0.15559669 2.1913045 + 1.93908836 -0.08678864 0.06748919 + 0.13114716 2.15827511 0.06333341 + 2.36161952 1.42824405 2.58837618 +-0.03895165 0.12197669 0.05496244 + 1.79528462 2.48830207 -0.55733221 + 2.11363589 0.09280028 2.0301803 + 0.19221505 2.16245144 2.07930701 diff --git a/tests/qe.scf/na.in b/tests/qe.scf/na.in new file mode 100644 index 000000000..56a2d2e1b --- /dev/null +++ b/tests/qe.scf/na.in @@ -0,0 +1,44 @@ + +&control + calculation = 'scf' + restart_mode = 'from_scratch', + prefix = 'Na' + outdir = './tmp' + pseudo_dir = './' +/ +&SYSTEM + ibrav=0, + nosym=.true., + nat=3, + ntyp=1, + occupations = 'smearing', + smearing = 'gauss', + degauss = 0.02, + ecutwfc = 100, + ecutrho = 960, + lspinorb = .false., + noncolin = .false., +/ +&ELECTRONS + conv_thr = 1.0d-9, + mixing_beta = 0.7, + electron_maxstep = 200, +/ +&ions +/ +&cell +/ +ATOMIC_SPECIES + Na 22.989769 Na_ONCV_PBE-1.0.upf +CELL_PARAMETERS {angstrom} + 7.171683039200000 0.000000000000000 0.000000000000000 + -4.270578118300000 5.761527588200000 0.000000000000000 + -0.000000045600000 0.000000023000000 12.826457854999999 +ATOMIC_POSITIONS (crystal) + + Na 0.940587444301534 0.397635863676890 0.059472381901808 + Na 0.059413515648061 0.602364552456546 0.559472465518034 + Na 0.602364619812068 0.059413062489401 0.059472381901808 +K_POINTS {automatic} + 8 8 4 0 0 0 + \ No newline at end of file diff --git a/tests/qe.scf/na.out b/tests/qe.scf/na.out new file mode 100644 index 000000000..a1f0042e1 --- /dev/null +++ b/tests/qe.scf/na.out @@ -0,0 +1,343 @@ + + Program PWSCF v.7.0 starts on 18Sep2024 at 9:37:38 + + This program is part of the open-source Quantum ESPRESSO suite + for quantum simulation of materials; please cite + "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); + "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017); + "P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020); + URL http://www.quantum-espresso.org", + in publications or presentations arising from this work. More details at + http://www.quantum-espresso.org/quote + + Parallel version (MPI & OpenMP), running on 32 processor cores + Number of MPI processes: 32 + Threads/MPI process: 1 + + MPI processes distributed on 1 nodes + R & G space division: proc/nbgrp/npool/nimage = 32 + 124265 MiB available memory on the printing compute node when the environment starts + + Waiting for input... + Reading input from standard input +Warning: card &CELL ignored +Warning: card / ignored + + Current dimensions of program PWSCF are: + Max number of different atomic species (ntypx) = 10 + Max number of k-points (npk) = 40000 + Max angular momentum in pseudopotentials (lmaxx) = 4 + Message from routine setup: + no reason to have ecutrho>4*ecutwfc + + Subspace diagonalization in iterative solution of the eigenvalue problem: + a serial algorithm will be used + + + Parallelization info + -------------------- + sticks: dense smooth PW G-vecs: dense smooth PW + Min 352 146 40 56132 15094 2202 + Max 353 147 41 56139 15101 2213 + Sum 11267 4699 1301 1796313 483165 70641 + + Using Slab Decomposition + + + + bravais-lattice index = 0 + lattice parameter (alat) = 13.5525 a.u. + unit-cell volume = 3576.5316 (a.u.)^3 + number of atoms/cell = 3 + number of atomic types = 1 + number of electrons = 540.00 + number of Kohn-Sham states= 324 + kinetic-energy cutoff = 100.0000 Ry + charge density cutoff = 960.0000 Ry + scf convergence threshold = 1.0E-09 + mixing beta = 0.7000 + number of iterations used = 8 plain mixing + Exchange-correlation= PBE + ( 1 4 3 4 0 0 0) + + celldm(1)= 13.552517 celldm(2)= 0.000000 celldm(3)= 0.000000 + celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 + + crystal axes: (cart. coord. in units of alat) + a(1) = ( 1.000000 0.000000 0.000000 ) + a(2) = ( -0.595478 0.803372 0.000000 ) + a(3) = ( -0.000000 0.000000 1.788486 ) + + reciprocal axes: (cart. coord. in units 2 pi/alat) + b(1) = ( 1.000000 0.741223 0.000000 ) + b(2) = ( 0.000000 1.244754 -0.000000 ) + b(3) = ( 0.000000 0.000000 0.559132 ) + + + PseudoPot. # 1 for Na read from file: + ./Na_ONCV_PBE-1.0.upf + MD5 check sum: d7d7bc8e018c79acd8ed72114b17dc6b + Pseudo is Norm-conserving, Zval = 9.0 + Generated using ONCVPSP code by D. R. Hamann + Using radial grid of 602 points, 4 beta functions with: + l(1) = 0 + l(2) = 0 + l(3) = 1 + l(4) = 1 + + atomic species valence mass pseudopotential + Na 9.00 22.98977 Na( 1.00) + + No symmetry found + + + + Cartesian axes + + site n. atom positions (alat units) + 1 Na tau( 1) = ( 0.7038041 0.3194494 0.1063655 ) + 2 Na tau( 2) = ( -0.2992812 0.4839227 1.0006089 ) + 3 Na tau( 3) = ( 0.5669855 0.0477308 0.1063655 ) + + number of k points= 132 Gaussian smearing, width (Ry)= 0.0200 + + Number of k-points >= 100: set verbosity='high' to print them. + + Dense grid: 1796313 G-vectors FFT dimensions: ( 135, 135, 240) + + Smooth grid: 483165 G-vectors FFT dimensions: ( 90, 90, 160) + + Estimated max dynamical RAM per process > 1.32 GB + + Estimated total dynamical RAM > 42.10 GB + + Initial potential from superposition of free atoms + + starting charge 531.7976, renormalised to 540.0000 + Starting wfcs are random + + total cpu time spent up to now is 114.9 secs + + Self-consistent Calculation + + iteration # 1 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 1.00E-02, avg # of iterations = 9.1 + + Threshold (ethr) on eigenvalues was too large: + Diagonalizing with lowered threshold + + Davidson diagonalization with overlap + ethr = 5.78E-04, avg # of iterations = 1.8 + + total cpu time spent up to now is 1816.0 secs + + total energy = -5091.43713858 Ry + estimated scf accuracy < 2.93415295 Ry + + iteration # 2 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 5.43E-04, avg # of iterations = 3.1 + + total cpu time spent up to now is 2304.9 secs + + total energy = -5091.87662866 Ry + estimated scf accuracy < 0.18067264 Ry + + iteration # 3 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 3.35E-05, avg # of iterations = 9.2 + + total cpu time spent up to now is 2929.4 secs + + total energy = -5091.86348124 Ry + estimated scf accuracy < 0.24741291 Ry + + iteration # 4 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 3.35E-05, avg # of iterations = 6.2 + + total cpu time spent up to now is 3422.9 secs + + total energy = -5091.91697077 Ry + estimated scf accuracy < 0.03279724 Ry + + iteration # 5 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 6.07E-06, avg # of iterations = 6.5 + + total cpu time spent up to now is 3919.2 secs + + total energy = -5091.92159622 Ry + estimated scf accuracy < 0.01385226 Ry + + iteration # 6 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 2.57E-06, avg # of iterations = 4.9 + + total cpu time spent up to now is 4362.4 secs + + total energy = -5091.92392162 Ry + estimated scf accuracy < 0.00067159 Ry + + iteration # 7 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + c_bands: 1 eigenvalues not converged + ethr = 1.24E-07, avg # of iterations = 2.4 + + total cpu time spent up to now is 4735.1 secs + + total energy = -5091.92383567 Ry + estimated scf accuracy < 0.00330792 Ry + + iteration # 8 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 1.24E-07, avg # of iterations = 2.0 + + total cpu time spent up to now is 5089.7 secs + + total energy = -5091.92408732 Ry + estimated scf accuracy < 0.00023165 Ry + + iteration # 9 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 4.29E-08, avg # of iterations = 2.0 + + total cpu time spent up to now is 5447.8 secs + + total energy = -5091.92409876 Ry + estimated scf accuracy < 0.00005097 Ry + + iteration # 10 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 9.44E-09, avg # of iterations = 2.0 + + total cpu time spent up to now is 5804.4 secs + + total energy = -5091.92409732 Ry + estimated scf accuracy < 0.00020843 Ry + + iteration # 11 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 9.44E-09, avg # of iterations = 1.8 + + total cpu time spent up to now is 6150.7 secs + + total energy = -5091.92411078 Ry + estimated scf accuracy < 0.00000218 Ry + + iteration # 12 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 4.03E-10, avg # of iterations = 2.0 + + total cpu time spent up to now is 6512.7 secs + + total energy = -5091.92411112 Ry + estimated scf accuracy < 0.00000056 Ry + + iteration # 13 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 1.04E-10, avg # of iterations = 2.0 + + total cpu time spent up to now is 6874.7 secs + + total energy = -5091.92411124 Ry + estimated scf accuracy < 0.00000010 Ry + + iteration # 14 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 1.90E-11, avg # of iterations = 2.0 + + total cpu time spent up to now is 7236.4 secs + + total energy = -5091.92411126 Ry + estimated scf accuracy < 0.00000002 Ry + + iteration # 15 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 3.88E-12, avg # of iterations = 2.0 + + total cpu time spent up to now is 7598.0 secs + + total energy = -5091.92411126 Ry + estimated scf accuracy < 3.1E-09 Ry + + iteration # 16 ecut= 100.00 Ry beta= 0.70 + Davidson diagonalization with overlap + ethr = 5.74E-13, avg # of iterations = 2.0 + + total cpu time spent up to now is 7958.9 secs + + End of self-consistent calculation + + Number of k-points >= 100: set verbosity='high' to print the bands. + + the Fermi energy is 17.2707 ev + +! total energy = -5091.92411126 Ry + estimated scf accuracy < 9.4E-10 Ry + smearing contrib. (-TS) = -0.02510189 Ry + internal energy E=F+TS = -5091.89900937 Ry + + The total energy is F=E-TS. E is the sum of the following terms: + one-electron contribution = -1954.47492763 Ry + hartree contribution = 1190.28239393 Ry + xc contribution = -772.17810332 Ry + ewald contribution = -3555.52837235 Ry + + convergence has been achieved in 16 iterations + + Forces acting on atoms (Ry/au): + + atom 1 type 1 force = -0.0 -0.0 0.0 + atom 2 type 1 force = -0.0 0.0 0.0 + atom 3 type 1 force = -0.0 0.0 -0.0 + + Writing all to output data dir ./tmp/Na.save/ + + init_run : 106.04s CPU 113.67s WALL ( 1 calls) + electrons : 7468.59s CPU 7844.89s WALL ( 1 calls) + + Called by init_run: + wfcinit : 103.82s CPU 111.27s WALL ( 1 calls) + potinit : 0.41s CPU 0.45s WALL ( 1 calls) + hinit0 : 0.77s CPU 0.83s WALL ( 1 calls) + + Called by electrons: + c_bands : 7022.30s CPU 7363.43s WALL ( 17 calls) + sum_band : 444.25s CPU 478.23s WALL ( 17 calls) + v_of_rho : 1.61s CPU 1.93s WALL ( 17 calls) + mix_rho : 0.31s CPU 0.40s WALL ( 17 calls) + + Called by c_bands: + init_us_2 : 22.26s CPU 23.03s WALL ( 4620 calls) + init_us_2:cp : 22.22s CPU 23.01s WALL ( 4620 calls) + cegterg : 6883.35s CPU 7219.17s WALL ( 2244 calls) + + Called by *egterg: + cdiaghg : 1863.67s CPU 1931.50s WALL ( 10175 calls) + h_psi : 2890.75s CPU 3087.99s WALL ( 10439 calls) + g_psi : 14.56s CPU 14.97s WALL ( 8063 calls) + + Called by h_psi: + h_psi:calbec : 479.18s CPU 494.17s WALL ( 10439 calls) + vloc_psi : 1926.22s CPU 2091.42s WALL ( 10439 calls) + add_vuspsi : 470.49s CPU 486.00s WALL ( 10439 calls) + + General routines + calbec : 479.12s CPU 494.13s WALL ( 10439 calls) + fft : 0.84s CPU 1.04s WALL ( 202 calls) + ffts : 0.03s CPU 0.04s WALL ( 34 calls) + fftw : 2059.48s CPU 2242.08s WALL ( 4338058 calls) + interpolate : 0.09s CPU 0.11s WALL ( 17 calls) + + Parallel routines + + PWSCF : 2h 6m CPU 2h19m WALL + + + This run was terminated on: 11:57:29 18Sep2024 + +=------------------------------------------------------------------------------= + JOB DONE. +=------------------------------------------------------------------------------= diff --git a/tests/test_abacus_spin.py b/tests/test_abacus_spin.py new file mode 100644 index 000000000..df8ef7d0d --- /dev/null +++ b/tests/test_abacus_spin.py @@ -0,0 +1,157 @@ +from __future__ import annotations + +import os +import shutil +import unittest + +import numpy as np +from context import dpdata + + +class TestABACUSSpin(unittest.TestCase): + def setUp(self): + self.dump_path = "abacus.spin/dump" + os.makedirs(self.dump_path, exist_ok=True) + + def tearDown(self): + if os.path.isdir(self.dump_path): + shutil.rmtree(self.dump_path) + + def test_scf(self): + os.system("cp abacus.spin/INPUT.scf abacus.spin/INPUT") + mysys = dpdata.LabeledSystem("abacus.spin", fmt="abacus/scf") + data = mysys.data + self.assertAlmostEqual(data["energies"][0], -6818.719409466637) + np.testing.assert_almost_equal( + data["spins"][0], + [ + [-0.0000002724, -0.0000001728, 2.4000001004], + [-0.0000003180, -0.0000002299, 2.3999994597], + ], + decimal=8, + ) + np.testing.assert_almost_equal( + data["mag_forces"][0], + [ + [-0.0000175013, -0.0000418680, -0.3669618965], + [-0.0000161517, -0.0000195198, -0.3669821632], + ], + decimal=8, + ) + + # dump to deepmd-npy + mysys.to(file_name=self.dump_path, fmt="deepmd/npy") + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/spin.npy")) + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/force_mag.npy")) + + sys2 = dpdata.LabeledSystem(self.dump_path, fmt="deepmd/npy") + np.testing.assert_almost_equal(data["spins"], sys2.data["spins"], decimal=8) + np.testing.assert_almost_equal( + data["mag_forces"], sys2.data["mag_forces"], decimal=8 + ) + + def test_relax(self): + os.system("cp abacus.spin/INPUT.relax abacus.spin/INPUT") + mysys = dpdata.LabeledSystem("abacus.spin", fmt="abacus/relax") + data = mysys.data + spins_ref = np.array( + [ + [ + [1.16909819, 1.16895965, 1.16895485], + [1.16827825, 1.16832716, 1.16836899], + ], + [ + [1.25007143, 1.25006167, 1.25004587], + [1.25015764, 1.2501678, 1.25018344], + ], + [ + [1.24984994, 1.24977108, 1.24978313], + [1.24996533, 1.2500441, 1.25003208], + ], + ] + ) + magforces_ref = np.array( + [ + [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], + [ + [-0.16734626, -0.16735378, -0.16735617], + [-0.16836467, -0.16835897, -0.16835625], + ], + [ + [-0.16573406, -0.16574627, -0.1657445], + [-0.16619489, -0.16617948, -0.16618272], + ], + ] + ) + self.assertEqual(len(data["spins"]), 3) + self.assertEqual(len(data["mag_forces"]), 3) + np.testing.assert_almost_equal(data["spins"], spins_ref, decimal=8) + np.testing.assert_almost_equal(data["mag_forces"], magforces_ref, decimal=8) + + # dump to deepmd-npy + mysys.to(file_name=self.dump_path, fmt="deepmd/npy") + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/spin.npy")) + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/force_mag.npy")) + + sys2 = dpdata.LabeledSystem(self.dump_path, fmt="deepmd/npy") + np.testing.assert_almost_equal(data["spins"], sys2.data["spins"], decimal=8) + np.testing.assert_almost_equal( + data["mag_forces"], sys2.data["mag_forces"], decimal=8 + ) + + def test_md(self): + os.system("cp abacus.spin/INPUT.md abacus.spin/INPUT") + mysys = dpdata.LabeledSystem("abacus.spin", fmt="abacus/md") + data = mysys.data + spins_ref = np.array( + [ + [ + [1.16909819, 1.16895965, 1.16895485], + [1.16827825, 1.16832716, 1.16836899], + ], + [ + [1.2500362, 1.25007501, 1.2500655], + [1.25019078, 1.25015253, 1.25016188], + ], + [ + [1.24985138, 1.24976901, 1.2497695], + [1.24996388, 1.25004618, 1.25004561], + ], + [ + [1.24982513, 1.24985445, 1.24985336], + [1.25005073, 1.25001814, 1.25002065], + ], + ] + ) + magforces_ref = np.array( + [ + [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], + [ + [-0.16747275, -0.16747145, -0.16746776], + [-0.16853881, -0.16853935, -0.16854119], + ], + [ + [-0.16521817, -0.16523256, -0.16523212], + [-0.16549418, -0.16547867, -0.16547913], + ], + [ + [-0.16141172, -0.16140644, -0.1614127], + [-0.15901519, -0.15905932, -0.15904824], + ], + ] + ) + self.assertEqual(len(data["spins"]), 4) + self.assertEqual(len(data["mag_forces"]), 4) + np.testing.assert_almost_equal(data["spins"], spins_ref, decimal=8) + np.testing.assert_almost_equal(data["mag_forces"], magforces_ref, decimal=8) + + # dump to deepmd-npy + mysys.to(file_name=self.dump_path, fmt="deepmd/npy") + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/spin.npy")) + self.assertTrue(os.path.isfile(f"{self.dump_path}/set.000/force_mag.npy")) + + sys2 = dpdata.LabeledSystem(self.dump_path, fmt="deepmd/npy") + np.testing.assert_almost_equal(data["spins"], sys2.data["spins"], decimal=8) + np.testing.assert_almost_equal( + data["mag_forces"], sys2.data["mag_forces"], decimal=8 + ) diff --git a/tests/test_abacus_stru_dump.py b/tests/test_abacus_stru_dump.py index 356aa57f4..084a5473c 100644 --- a/tests/test_abacus_stru_dump.py +++ b/tests/test_abacus_stru_dump.py @@ -1,16 +1,23 @@ from __future__ import annotations import os +import shutil import unittest from context import dpdata from test_vasp_poscar_dump import myfilecmp +from dpdata.abacus.scf import parse_stru_pos + class TestStruDump(unittest.TestCase): def setUp(self): self.system_ch4 = dpdata.System("abacus.scf/STRU.ch4", fmt="stru") + def tearDown(self): + if os.path.isfile("STRU_tmp"): + os.remove("STRU_tmp") + def test_dump_stru(self): self.system_ch4.to( "stru", @@ -22,9 +29,157 @@ def test_dump_stru(self): ) myfilecmp(self, "abacus.scf/stru_test", "STRU_tmp") - def tearDown(self): - if os.path.isfile("STRU_tmp"): - os.remove("STRU_tmp") + def test_dumpStruLinkFile(self): + os.makedirs("abacus.scf/tmp", exist_ok=True) + self.system_ch4.to( + "stru", + "abacus.scf/tmp/STRU_tmp", + mass=[12, 1], + pp_file=["abacus.scf/C.upf", "abacus.scf/H.upf"], + numerical_orbital=["abacus.scf/C.orb", "abacus.scf/H.orb"], + numerical_descriptor="abacus.scf/jle.orb", + link_file=True, + ) + myfilecmp(self, "abacus.scf/stru_test", "abacus.scf/tmp/STRU_tmp") + + self.assertTrue(os.path.islink("abacus.scf/tmp/C.upf")) + self.assertTrue(os.path.islink("abacus.scf/tmp/H.upf")) + self.assertTrue(os.path.islink("abacus.scf/tmp/C.orb")) + self.assertTrue(os.path.islink("abacus.scf/tmp/H.orb")) + self.assertTrue(os.path.islink("abacus.scf/tmp/jle.orb")) + + if os.path.isdir("abacus.scf/tmp"): + shutil.rmtree("abacus.scf/tmp") + + def test_dump_spinconstrain(self): + self.system_ch4.to( + "stru", + "STRU_tmp", + mass=[12, 1], + pp_file={"C": "C.upf", "H": "H.upf"}, + numerical_orbital={"C": "C.orb", "H": "H.orb"}, + mag=[4, [1, 1, 1], 1, 1, 1], + sc=[True, True, [True, False, True], False, True], + move=[1, 1, 1, 0, 0], + angle1=[None, None, 100, 90, 80], + angle2=[100, 90, 80, 70, None], + lambda_=[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9], None, None], + ) + + assert os.path.isfile("STRU_tmp") + with open("STRU_tmp") as f: + c = f.read() + + with open("abacus.scf/stru.ref") as f: + stru_ref = f.read() + assert c == stru_ref + + def test_dump_spin(self): + sys_tmp = dpdata.System("abacus.scf/stru.ref", fmt="stru") + sys_tmp.data["spins"] = [ + [[1, 2, 3], [4, 5, 6], [1, 1, 1], [2, 2, 2], [3, 3, 3]] + ] + sys_tmp.to( + "stru", + "STRU_tmp", + mass=[12, 1], + pp_file=["C.upf", "H.upf"], + numerical_orbital=["C.orb", "H.orb"], + ) + assert os.path.isfile("STRU_tmp") + with open("STRU_tmp") as f: + c = f.read() + stru_ref = """C +0.0 +1 +5.192682633809 4.557725978258 4.436846615358 1 1 1 mag 1.000000000000 2.000000000000 3.000000000000 +H +0.0 +4 +5.416431453540 4.011298860305 3.511161492417 1 1 1 mag 4.000000000000 5.000000000000 6.000000000000 +4.131588222365 4.706745191323 4.431136645083 1 1 1 mag 1.000000000000 1.000000000000 1.000000000000 +5.630930319126 5.521640894956 4.450356541303 1 1 1 mag 2.000000000000 2.000000000000 2.000000000000 +5.499851012568 4.003388899277 5.342621842622 1 1 1 mag 3.000000000000 3.000000000000 3.000000000000 +""" + self.assertTrue(stru_ref in c) + + +class TestABACUSParseStru(unittest.TestCase): + def test_parse_stru_post(self): + pos, move, velocity, magmom, angle1, angle2, constrain, lambda1 = ( + parse_stru_pos( + "1.0 2.0 3.0 1 1 1 mag 1.0 2.0 3.0 v 1 1 1 angle1 100 angle2 90 sc 1 0 1 lambda 0.1 0.2 0.3" + ) + ) + self.assertEqual(pos, [1.0, 2.0, 3.0]) + self.assertEqual(move, [1, 1, 1]) + self.assertEqual(velocity, [1.0, 1.0, 1.0]) + self.assertEqual(magmom, [1.0, 2.0, 3.0]) + self.assertEqual(angle1, 100) + self.assertEqual(angle2, 90) + self.assertEqual(constrain, [1, 0, 1]) + self.assertEqual(lambda1, [0.1, 0.2, 0.3]) + + pos, move, velocity, magmom, angle1, angle2, constrain, lambda1 = ( + parse_stru_pos("1 2 3 mag 1 sc 1 lambda 0.1") + ) + self.assertEqual(pos, [1, 2, 3]) + self.assertEqual(move, None) + self.assertEqual(velocity, None) + self.assertEqual(magmom, 1.0) + self.assertEqual(angle1, None) + self.assertEqual(angle2, None) + self.assertEqual(constrain, 1) + self.assertEqual(lambda1, 0.1) + + def test_parse_stru_error(self): + line = "1.0 2.0 3.0 1 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 mag 1.0 3.0 v 1 1 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 mag 1 2 3 4" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 v 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 v 1 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 v 1 1 1 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 1" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 angle1 " + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 angle1 1 2" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 1 1 1 angle2" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 angle2 1 2" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 sc" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 sc 1 2" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 lambda" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 lambda 1 2" + self.assertRaises(RuntimeError, parse_stru_pos, line), line + + line = "1.0 2.0 3.0 lambda 1 2 3 4" + self.assertRaises(RuntimeError, parse_stru_pos, line), line if __name__ == "__main__": diff --git a/tests/test_perturb.py b/tests/test_perturb.py index eea711167..5c2f4a7b1 100644 --- a/tests/test_perturb.py +++ b/tests/test_perturb.py @@ -12,6 +12,7 @@ class NormalGenerator: def __init__(self): self.randn_generator = self.get_randn_generator() self.rand_generator = self.get_rand_generator() + self.choice_generator = self.get_choice_generator() def randn(self, number): return next(self.randn_generator) @@ -19,6 +20,9 @@ def randn(self, number): def rand(self, number): return next(self.rand_generator) + def choice(self, total_natoms, pert_natoms, replace): + return next(self.choice_generator)[:pert_natoms] + @staticmethod def get_randn_generator(): data = np.asarray( @@ -44,11 +48,16 @@ def get_rand_generator(): [0.23182233, 0.87106847, 0.68728511, 0.94180274, 0.92860453, 0.69191187] ) + @staticmethod + def get_choice_generator(): + yield np.asarray([5, 3, 7, 6, 2, 1, 4, 0]) + class UniformGenerator: def __init__(self): self.randn_generator = self.get_randn_generator() self.rand_generator = self.get_rand_generator() + self.choice_generator = self.get_choice_generator() def randn(self, number): return next(self.randn_generator) @@ -56,6 +65,9 @@ def randn(self, number): def rand(self, number): return next(self.rand_generator) + def choice(self, total_natoms, pert_natoms, replace): + return next(self.choice_generator) + @staticmethod def get_randn_generator(): data = [ @@ -97,11 +109,16 @@ def get_rand_generator(): yield np.asarray(data[count]) count += 1 + @staticmethod + def get_choice_generator(): + yield np.asarray([5, 3, 7, 6, 2, 1, 4, 0]) + class ConstGenerator: def __init__(self): self.randn_generator = self.get_randn_generator() self.rand_generator = self.get_rand_generator() + self.choice_generator = self.get_choice_generator() def randn(self, number): return next(self.randn_generator) @@ -109,6 +126,9 @@ def randn(self, number): def rand(self, number): return next(self.rand_generator) + def choice(self, total_natoms, pert_natoms, replace): + return next(self.choice_generator) + @staticmethod def get_randn_generator(): data = np.asarray( @@ -135,6 +155,10 @@ def get_rand_generator(): [0.01525907, 0.68387374, 0.39768541, 0.55596047, 0.26557088, 0.60883073] ) + @staticmethod + def get_choice_generator(): + yield np.asarray([5, 3, 7, 6, 2, 1, 4, 0]) + # %% class TestPerturbNormal(unittest.TestCase, CompSys, IsPBC): @@ -142,6 +166,7 @@ class TestPerturbNormal(unittest.TestCase, CompSys, IsPBC): def setUp(self, random_mock): random_mock.rand = NormalGenerator().rand random_mock.randn = NormalGenerator().randn + random_mock.choice = NormalGenerator().choice system_1_origin = dpdata.System("poscars/POSCAR.SiC", fmt="vasp/poscar") self.system_1 = system_1_origin.perturb(1, 0.05, 0.6, "normal") self.system_2 = dpdata.System("poscars/POSCAR.SiC.normal", fmt="vasp/poscar") @@ -153,6 +178,7 @@ class TestPerturbUniform(unittest.TestCase, CompSys, IsPBC): def setUp(self, random_mock): random_mock.rand = UniformGenerator().rand random_mock.randn = UniformGenerator().randn + random_mock.choice = UniformGenerator().choice system_1_origin = dpdata.System("poscars/POSCAR.SiC", fmt="vasp/poscar") self.system_1 = system_1_origin.perturb(1, 0.05, 0.6, "uniform") self.system_2 = dpdata.System("poscars/POSCAR.SiC.uniform", fmt="vasp/poscar") @@ -164,11 +190,24 @@ class TestPerturbConst(unittest.TestCase, CompSys, IsPBC): def setUp(self, random_mock): random_mock.rand = ConstGenerator().rand random_mock.randn = ConstGenerator().randn + random_mock.choice = ConstGenerator().choice system_1_origin = dpdata.System("poscars/POSCAR.SiC", fmt="vasp/poscar") self.system_1 = system_1_origin.perturb(1, 0.05, 0.6, "const") self.system_2 = dpdata.System("poscars/POSCAR.SiC.const", fmt="vasp/poscar") self.places = 6 +class TestPerturbPartAtoms(unittest.TestCase, CompSys, IsPBC): + @patch("numpy.random") + def setUp(self, random_mock): + random_mock.rand = NormalGenerator().rand + random_mock.randn = NormalGenerator().randn + random_mock.choice = NormalGenerator().choice + system_1_origin = dpdata.System("poscars/POSCAR.SiC", fmt="vasp/poscar") + self.system_1 = system_1_origin.perturb(1, 0.05, 0.6, "normal", 0.25) + self.system_2 = dpdata.System("poscars/POSCAR.SiC.partpert", fmt="vasp/poscar") + self.places = 6 + + if __name__ == "__main__": unittest.main() diff --git a/tests/test_qe_pw_scf.py b/tests/test_qe_pw_scf.py index 8703e7c24..7fe803b9d 100644 --- a/tests/test_qe_pw_scf.py +++ b/tests/test_qe_pw_scf.py @@ -161,11 +161,11 @@ def test_virial(self): def test_energy(self): ref_energy = -219.74425946528794 - self.assertAlmostEqual(self.system_ch4.data["energies"][0], ref_energy) + self.assertAlmostEqual(self.system_ch4.data["energies"][0] / ref_energy, 1.0) ref_energy = -30007.651851226798 - self.assertAlmostEqual(self.system_h2o.data["energies"][0], ref_energy) + self.assertAlmostEqual(self.system_h2o.data["energies"][0] / ref_energy, 1.0) ref_energy = -219.7153691367526562 - self.assertAlmostEqual(self.system_ch4_2.data["energies"][0], ref_energy) + self.assertAlmostEqual(self.system_ch4_2.data["energies"][0] / ref_energy, 1.0) class TestPWSCFLabeledOutput(unittest.TestCase, TestPWSCFSinglePointEnergy): @@ -188,5 +188,48 @@ def setUp(self): ) +class TestNa(unittest.TestCase): + def test(self): + ss = dpdata.LabeledSystem("qe.scf/na.out", fmt="qe/pw/scf") + self.assertEqual(ss["atom_numbs"], [3]) + self.assertEqual(ss["atom_names"], ["Na"]) + self.assertEqual(ss.get_nframes(), 1) + np.testing.assert_array_equal(ss["atom_types"], [0, 0, 0]) + np.testing.assert_allclose( + ss["coords"][0], + np.array( + [ + 0.940587444301534, + 0.397635863676890, + 0.059472381901808, + 0.059413515648061, + 0.602364552456546, + 0.559472465518034, + 0.602364619812068, + 0.059413062489401, + 0.059472381901808, + ] + ).reshape(3, 3) + @ ss["cells"][0], + ) + np.testing.assert_allclose( + ss["cells"][0], + np.array( + [ + 7.171683039200000, + 0.000000000000000, + 0.000000000000000, + -4.270578118300000, + 5.761527588200000, + 0.000000000000000, + -0.000000045600000, + 0.000000023000000, + 12.826457854999999, + ] + ).reshape(3, 3), + ) + np.testing.assert_allclose(ss["forces"][0], np.zeros([3, 3])) + + if __name__ == "__main__": unittest.main() diff --git a/tests/test_qe_pw_scf_energy_bug.py b/tests/test_qe_pw_scf_energy_bug.py index b66ce924b..a513dc7c7 100644 --- a/tests/test_qe_pw_scf_energy_bug.py +++ b/tests/test_qe_pw_scf_energy_bug.py @@ -8,7 +8,7 @@ class TestPWSCFSinglePointEnergy: def test_energy(self): ref_energy = -296.08379065679094669 - self.assertAlmostEqual(self.system_al.data["energies"][0], ref_energy) + self.assertAlmostEqual(self.system_al.data["energies"][0] / ref_energy, 1.0) class TestPWSCFLabeledOutput(unittest.TestCase, TestPWSCFSinglePointEnergy):