-
Notifications
You must be signed in to change notification settings - Fork 0
/
integral.py
167 lines (138 loc) · 6.22 KB
/
integral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import math
class AbstractIntegral(object):
def __init__(self, values):
self._values = values
def function(self,x,y,z):
return sum((i*j(x,y,z) for i,j in zip(self._values,self.shape_function)))
x = lambda self, idx: self.points[idx][0]
y = lambda self, idx: self.points[idx][1]
z = lambda self, idx: self.points[idx][2]
p = lambda self: xrange(len(self.points))
volume = lambda self: sum(self.weight)
@classmethod
def nodes_count(self):
return len(self.shape_function)
def I(self):
return sum((self.weight[i]*self.function(self.x(i),self.y(i),self.z(i)) for i in self.p()))
class TetrahedronIntegral(AbstractIntegral):
shape_function = (lambda x,y,z: y*(2*y-1), #1
lambda x,y,z: z*(2*z-1), #2
lambda x,y,z: (1-x-y-z)*(1-2*x-2*y-2*z), #3
lambda x,y,z: x*(2*x-1), #4
lambda x,y,z: 4*y*z, #5
lambda x,y,z: 4*z*(1-x-y-z), #6
lambda x,y,z: 4*y*(1-x-y-z), #7
lambda x,y,z: 4*x*y, #8
lambda x,y,z: 4*x*z, #9
lambda x,y,z: 4*x*(1-x-y-z)) #10
a = 0.25
b = 1./6.
c = 0.5
points = ((a,a,a),
(b,b,b),
(b,b,c),
(b,c,b),
(c,b,b))
weight = (-2./15., 3./40., 3./40., 3./40., 3./40.)
class HexahedronIntegral(AbstractIntegral):
shape_function = (lambda x,y,z: (1./8.)*(1-x)*(1-y)*(1-z)*(-2-x-y-z), #1
lambda x,y,z: (1./8.)*(1+x)*(1-y)*(1-z)*(-2+x-y-z), #2
lambda x,y,z: (1./8.)*(1+x)*(1+y)*(1-z)*(-2+x+y-z), #3
lambda x,y,z: (1./8.)*(1-x)*(1+y)*(1-z)*(-2-x+y-z), #4
lambda x,y,z: (1./8.)*(1-x)*(1-y)*(1+z)*(-2-x-y+z), #5
lambda x,y,z: (1./8.)*(1+x)*(1-y)*(1+z)*(-2+x-y+z), #6
lambda x,y,z: (1./8.)*(1+x)*(1+y)*(1+z)*(-2+x+y+z), #7
lambda x,y,z: (1./8.)*(1-x)*(1+y)*(1+z)*(-2-x+y+z), #8
lambda x,y,z: (1./4.)*(1-x**2)*(1-y)*(1-z), #9
lambda x,y,z: (1./4.)*(1-y**2)*(1+x)*(1-z), #10
lambda x,y,z: (1./4.)*(1-x**2)*(1+y)*(1-z), #11
lambda x,y,z: (1./4.)*(1-y**2)*(1-x)*(1-z), #12
lambda x,y,z: (1./4.)*(1-z**2)*(1-x)*(1-y), #13
lambda x,y,z: (1./4.)*(1-z**2)*(1+x)*(1-y), #14
lambda x,y,z: (1./4.)*(1-z**2)*(1+x)*(1+y), #15
lambda x,y,z: (1./4.)*(1-z**2)*(1-x)*(1+y), #16
lambda x,y,z: (1./4.)*(1-x**2)*(1-y)*(1+z), #17
lambda x,y,z: (1./4.)*(1-y**2)*(1+x)*(1+z), #18
lambda x,y,z: (1./4.)*(1-x**2)*(1+y)*(1+z), #19
lambda x,y,z: (1./4.)*(1-y**2)*(1-x)*(1+z), #20
)
points = ((-1./math.sqrt(3),-1./math.sqrt(3),-1./math.sqrt(3)),
(-1./math.sqrt(3),-1./math.sqrt(3), 1./math.sqrt(3)),
(-1./math.sqrt(3), 1./math.sqrt(3),-1./math.sqrt(3)),
(-1./math.sqrt(3), 1./math.sqrt(3), 1./math.sqrt(3)),
( 1./math.sqrt(3),-1./math.sqrt(3),-1./math.sqrt(3)),
( 1./math.sqrt(3),-1./math.sqrt(3), 1./math.sqrt(3)),
( 1./math.sqrt(3), 1./math.sqrt(3),-1./math.sqrt(3)),
( 1./math.sqrt(3), 1./math.sqrt(3), 1./math.sqrt(3)))
weight = tuple(1. for _ in xrange(len(points)))
class PentahedronIntegral(AbstractIntegral):
shape_function = (lambda x,y,z: (y*(1-x)*(2*y-2-x))/2., #1
lambda x,y,z: (z*(1-x)*(2*z-2-x))/2., #2
lambda x,y,z: ((x-1)*(1-y-z)*(x+2*y+2*z))/2., #3
lambda x,y,z: (y*(1+x)*(2*y-2+x))/2., #4
lambda x,y,z: (z*(1+x)*(2*y-2+x))/2., #5
lambda x,y,z: ((-x-1)*(1-y-z)*(-x+2*y+2*z))/2., #6
lambda x,y,z: 2*y*z*(1-x), #7
lambda x,y,z: 2*z*(1-y-z)*(1-x), #8
lambda x,y,z: 2*y*(1-y-z)*(1-x), #9
lambda x,y,z: y*(1-x**2), #10
lambda x,y,z: z*(1-x**2), #11
lambda x,y,z: (1-y-z)*(1-x**2), #12
lambda x,y,z: 2*y*z*(1+x), #13
lambda x,y,z: 2*z*(1-y-z)*(1+x), #14
lambda x,y,z: 2*y*(1-y-z)*(1+x), #15
)
a = 0.577350269189626
points = ((-a, 1./3., 1./3.),
(-a, 0.6, 0.2),
(-a, 0.2, 0.6),
(-a, 0.2, 0.2),
( a, 1./3., 1./3.),
( a, 0.6, 0.2),
( a, 0.2, 0.6),
( a, 0.2, 0.2))
weight = (-27./96.,
25./96.,
25./96.,
25./96.,
-27./96.,
25./96.,
25./96.,
25./96.)
class PyramidIntegral(AbstractIntegral):
shape_function = (lambda x,y,z: ((-x+y+z-1)*(-x-y+z-1)*(x-0.5))/(2*(1-z)), #1
lambda x,y,z: ((-x-y+z-1)*(x-y+z-1)*(y-0.5))/(2*(1-z)), #2
lambda x,y,z: ((x-y+z-1)*(x+y+z-1)*(-x-0.5))/(2*(1-z)), #3
lambda x,y,z: ((x+y+z-1)*(-x+y+z-1)*(-y-0.5))/(2*(1-z)), #4
lambda x,y,z: 2*z*(z-0.5), #5
lambda x,y,z: ((-x+y+z-1)*(-x-y+z-1)*(x-y+z-1))/(2*(1-z)), #6
lambda x,y,z: ((-x-y+z-1)*(x-y+z-1)*(x+y+z-1))/(2*(1-z)), #7
lambda x,y,z: ((x-y+z-1)*(x+y+z-1)*(-x+y+z-1))/(2*(1-z)), #8
lambda x,y,z: ((x+y+z-1)*(-x+y+z-1)*(-x-y+z-1))/(2*(1-z)), #9
lambda x,y,z: (z*(-x+y+z-1)*(-x-y+z-1))/(1-z), #10
lambda x,y,z: (z*(-x-y+z-1)*(x-y+z-1))/(1-z), #11
lambda x,y,z: (z*(x-y+z-1)*(x+y+z-1))/(1-z), #12
lambda x,y,z: (z*(x+y+z-1)*(-x+y+z-1))/(1-z), #13
)
h1 = 0.1531754163448146
h2 = 0.6372983346207416
points = (( 0.5, 0, h1),
( 0, 0.5, h1),
(-0.5, 0, h1),
( 0, -0.5, h1),
( 0, 0, h2))
weight = tuple(2./15. for _ in xrange(len(points)))
class TestIntegral(AbstractIntegral):
shape_function = (lambda x, y, z: 4*x**3,)
points = ((-0.906179846,),(-0.538469310,),(0,),(0.53846931,),(0.906179846,))
weight = (0.236926885, 0.478628670, 0.568888889, 0.478628670, 0.236926885)
class Integral(object):
integrals = {TetrahedronIntegral.nodes_count(): TetrahedronIntegral,
HexahedronIntegral.nodes_count(): HexahedronIntegral,
PentahedronIntegral.nodes_count(): PentahedronIntegral,
PyramidIntegral.nodes_count(): PyramidIntegral,
TestIntegral.nodes_count(): TestIntegral}
@classmethod
def get_integral(self, values):
cnt = len(values)
return self.integrals[cnt](values)