-
Notifications
You must be signed in to change notification settings - Fork 18
/
utils.h
257 lines (225 loc) · 6.71 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#ifndef __fftwpputils_h__
#define __fftwpputils_h__ 1
#include <iostream>
#include "seconds.h"
#include "Complex.h"
extern double s; // Time limit (seconds) for testing
extern size_t N; // Minimum sample size for testing
extern size_t C; // number of padded FFTs to compute
extern size_t S; // stride between padded FFTs
extern int stats; // type of statistics used in timing test
#ifdef _WIN32
#include "getopt.h"
inline double cbrt(double x)
{
if(x == 0.0) return 0.0;
static double third=1.0/3.0;
return x > 0.0 ? exp(third*log(x)) : -exp(third*log(-x));
}
#else
#include <getopt.h>
#endif
namespace utils {
template<class T, class S>
inline T max(const T a, const S b)
{
return a > (T) b ? a : b;
}
template<class T>
inline T pow(T x, size_t y)
{
if(y == 0) return 1;
if(x == 0) return 0;
size_t r = 1;
while(true) {
if(y & 1) r *= x;
if((y >>= 1) == 0) return r;
x *= x;
}
}
extern void optionsHybrid(int argc, char* argv[], bool fft=false,
bool mpi=false);
inline void usageCommon(int n)
{
std::cerr << "Options: " << std::endl;
std::cerr << "-h\t\t help" << std::endl;
std::cerr << "-m n\t\t size m" << std::endl;
std::cerr << "-u\t\t unnormalized" << std::endl;
std::cerr << "-s t\t\t time limit (seconds)" << std::endl;
std::cerr << "-T n\t\t use n threads" << std::endl;
std::cerr << "-O\t\t output result" << std::endl;
std::cerr << "-S<int>\t\t stats used in timing test: "
<< "0=mean, 1=min, 2=max, 3=median, "
<< "4=90th percentile, 5=80th percentile, 6=50th percentile"
<< std::endl;
if(n > 1) {
std::cerr << "-x\t\t x size" << std::endl;
std::cerr << "-y\t\t y size" << std::endl;
}
if(n > 2)
std::cerr << "-z\t\t z size" << std::endl;
}
inline void usageDirect()
{
std::cerr << "-i\t\t implicitly padded convolution" << std::endl;
std::cerr << "-d\t\t direct convolution (slow)" << std::endl;
}
inline void usage(int n)
{
usageCommon(n);
std::cerr << "-A\t\t number of data blocks in input" << std::endl;
std::cerr << "-B\t\t number of data blocks in output" << std::endl;
}
inline void usageInplace(int n)
{
usageCommon(n);
std::cerr << "-i\t\t 0=out-of-place, 1=in-place" << std::endl;
}
inline void usageTest()
{
std::cerr << "-t\t\t accuracy test" << std::endl;
}
inline void usageExplicit(size_t n)
{
usageDirect();
if(n == 1)
std::cerr << "-I b\t\t 1=inplace (default), 0=out of place" << std::endl;
std::cerr << "-e\t\t explicitly padded convolution" << std::endl;
if(n > 1)
std::cerr << "-p\t\t pruned explicitly padded convolution" << std::endl;
}
inline void usageCompact(size_t n)
{
std::cerr << "-X\t\t x Hermitian padding (0 or 1)" << std::endl;
if(n > 1)
std::cerr << "-Y\t\t y Hermitian padding (0 or 1)" << std::endl;
if(n > 2)
std::cerr << "-Z\t\t z Hermitian padding (0 or 1)" << std::endl;
}
inline void usageb()
{
std::cerr << "-b\t\t which output block to check" << std::endl;
}
inline void usageTranspose()
{
std::cerr << "-a<int>\t\t block divisor: -1=sqrt(size), [0]=Tune"
<< std::endl;
std::cerr << "-s<int>\t\t alltoall: [-1]=Tune, 0=Optimized, 1=MPI, 2=compact"
<< std::endl;
std::cerr << "-q\t\t quiet" << std::endl;
}
inline void usageShift()
{
std::cerr << "-O<int>\t\t [0]=Standard, 1=Shift origin"
<< std::endl;
}
inline void usageFFT(int n)
{
usageCommon(n);
std::cerr << "-r\t\t type of run:\n"
<< "\t\t r=-1: all runs\n"
<< "\t\t r=0: in-place\n"
<< "\t\t r=1: out-of-place\n";
if(n > 1)
std::cerr << "\t\t r=2: transpose, in-place\n"
<< "\t\t r=3: transpose, out-of-place\n"
<< "\t\t r=4: full transpose, in-place\n"
<< "\t\t r=5: full transpose, out-of-place\n"
<< "\t\t r=6: strided, in-place\n"
<< "\t\t r=7: strided, out-of-place\n";
}
inline void usageGather()
{
std::cerr << "Options: " << std::endl;
std::cerr << "-h\t\t help" << std::endl;
std::cerr << "-m\t\t size" << std::endl;
std::cerr << "-x\t\t x size" << std::endl;
std::cerr << "-y\t\t y size" << std::endl;
std::cerr << "-z\t\t z size" << std::endl;
std::cerr << "-q\t\t quiet" << std::endl;
}
inline void usageHybrid(bool fft=false, bool mpi=false)
{
std::cerr << "Options: " << std::endl;
std::cerr << "-a\t\t accuracy test" << std::endl;
std::cerr << "-c\t\t use centered tranforms (if possible)" << std::endl;
std::cerr << "-h\t\t help" << std::endl;
std::cerr << "-m n\t\t use subtransform size n" << std::endl;
std::cerr << "-t\t\t show times produced by optimizer" << std::endl;
if(fft)
std::cerr << "-C n\t\t compute n padded FFTs at a time"
<< std::endl;
std::cerr << "-D n\t\t number n of blocks to process at a time" << std::endl;
std::cerr << "-E\t\t compute relative error using direct convolution (sets s=0 and forces normalization)" << std::endl;
std::cerr << "-I\t\t (0=out-of-place, 1=in-place) FFTs [by default I=1 only for multiple FFTs]" << std::endl;
std::cerr << "-O\t\t output result (sets s=0)" << std::endl;
std::cerr << "-R\t\t show which forward and backward routines are used" << std::endl;
if(mpi)
std::cerr << "-N n\t\t number of iterations" << std::endl;
else {
std::cerr << "-N t\t\t minimum number of iterations" << std::endl;
std::cerr << "-s t\t\t time limit (seconds)" << std::endl;
}
std::cerr << "-L n\t\t number n of physical data values" << std::endl;
std::cerr << "-M n\t\t minimal number n of padded data values" << std::endl;
if(fft)
std::cerr << "-S s\t\t use stride s between padded FFTs (defaults to C)" << std::endl;
else
std::cerr << "-S n\t\t use statistics type n (defaults to 0: MEDIAN)" << std::endl;
std::cerr << "-T n\t\t number n of threads" << std::endl;
}
// ceilpow2(n) returns the smallest power of 2 greater than or equal
// to a positive integer n.
inline size_t ceilpow2(size_t n)
{
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
return ++n;
}
// Return the smallest power of p greater than or equal to n.
inline size_t ceilpow(size_t p, size_t n)
{
size_t x=p;
size_t u=1;
size_t l=0;
while(n > x) {
x *= x;
l=u;
u *= 2;
}
if(n == x) return n;
while (l < u) {
size_t i=(l+u) >> 1;
if(n > pow(p,i))
l=i+1;
else
u=i;
}
return pow(p,u);
}
inline size_t padding(size_t n)
{
std::cout << "min padded buffer=" << n << std::endl;
// Choose next power of 2 for maximal efficiency.
return ceilpow2(n);
}
inline size_t cpadding(size_t m)
{
return padding(2*m-1);
}
inline size_t hpadding(size_t m)
{
return padding(3*m-2);
}
inline size_t tpadding(size_t m)
{
return padding(4*m-3);
}
// return real(z*w)
}
#endif