-
Notifications
You must be signed in to change notification settings - Fork 9
/
blur_effect.cpp
225 lines (195 loc) · 6.4 KB
/
blur_effect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include <epoxy/gl.h>
#include <assert.h>
#include <math.h>
#include <algorithm>
#include "blur_effect.h"
#include "effect_chain.h"
#include "effect_util.h"
#include "init.h"
#include "util.h"
using namespace std;
namespace movit {
BlurEffect::BlurEffect()
: num_taps(16),
radius(3.0f),
input_width(1280),
input_height(720)
{
// The first blur pass will forward resolution information to us.
hpass = new SingleBlurPassEffect(this);
CHECK(hpass->set_int("direction", SingleBlurPassEffect::HORIZONTAL));
vpass = new SingleBlurPassEffect(nullptr);
CHECK(vpass->set_int("direction", SingleBlurPassEffect::VERTICAL));
update_radius();
}
void BlurEffect::rewrite_graph(EffectChain *graph, Node *self)
{
Node *hpass_node = graph->add_node(hpass);
Node *vpass_node = graph->add_node(vpass);
graph->connect_nodes(hpass_node, vpass_node);
graph->replace_receiver(self, hpass_node);
graph->replace_sender(self, vpass_node);
self->disabled = true;
}
// We get this information forwarded from the first blur pass,
// since we are not part of the chain ourselves.
void BlurEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
{
assert(input_num == 0);
assert(width != 0);
assert(height != 0);
input_width = width;
input_height = height;
update_radius();
}
void BlurEffect::update_radius()
{
// We only have 16 taps to work with on each side, and we want that to
// reach out to about 2.5*sigma. Bump up the mipmap levels (giving us
// box blurs) until we have what we need.
unsigned mipmap_width = input_width, mipmap_height = input_height;
float adjusted_radius = radius;
while ((mipmap_width > 1 || mipmap_height > 1) && adjusted_radius * 1.5f > num_taps / 2) {
// Find the next mipmap size (round down, minimum 1 pixel).
mipmap_width = max(mipmap_width / 2, 1u);
mipmap_height = max(mipmap_height / 2, 1u);
// Approximate when mipmap sizes are odd, but good enough.
adjusted_radius = radius * float(mipmap_width) / float(input_width);
}
bool ok = hpass->set_float("radius", adjusted_radius);
ok |= hpass->set_int("width", mipmap_width);
ok |= hpass->set_int("height", mipmap_height);
ok |= hpass->set_int("virtual_width", mipmap_width);
ok |= hpass->set_int("virtual_height", mipmap_height);
ok |= hpass->set_int("num_taps", num_taps);
ok |= vpass->set_float("radius", adjusted_radius);
ok |= vpass->set_int("width", mipmap_width);
ok |= vpass->set_int("height", mipmap_height);
ok |= vpass->set_int("virtual_width", input_width);
ok |= vpass->set_int("virtual_height", input_height);
ok |= vpass->set_int("num_taps", num_taps);
assert(ok);
}
bool BlurEffect::set_float(const string &key, float value) {
if (key == "radius") {
radius = value;
update_radius();
return true;
}
return false;
}
bool BlurEffect::set_int(const string &key, int value) {
if (key == "num_taps") {
if (value < 2 || value % 2 != 0) {
return false;
}
num_taps = value;
update_radius();
return true;
}
return false;
}
SingleBlurPassEffect::SingleBlurPassEffect(BlurEffect *parent)
: parent(parent),
num_taps(16),
radius(3.0f),
direction(HORIZONTAL),
width(1280),
height(720),
uniform_samples(nullptr)
{
register_float("radius", &radius);
register_int("direction", (int *)&direction);
register_int("width", &width);
register_int("height", &height);
register_int("virtual_width", &virtual_width);
register_int("virtual_height", &virtual_height);
register_int("num_taps", &num_taps);
}
SingleBlurPassEffect::~SingleBlurPassEffect()
{
delete[] uniform_samples;
}
string SingleBlurPassEffect::output_fragment_shader()
{
char buf[256];
sprintf(buf, "#define DIRECTION_VERTICAL %d\n#define NUM_TAPS %d\n",
(direction == VERTICAL), num_taps);
uniform_samples = new float[2 * (num_taps / 2 + 1)];
register_uniform_vec2_array("samples", uniform_samples, num_taps / 2 + 1);
return buf + read_file("blur_effect.frag");
}
void SingleBlurPassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
{
Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
// Compute the weights; they will be symmetrical, so we only compute
// the right side.
float* weight = new float[num_taps + 1];
if (radius < 1e-3) {
weight[0] = 1.0f;
for (int i = 1; i < num_taps + 1; ++i) {
weight[i] = 0.0f;
}
} else {
float sum = 0.0f;
for (int i = 0; i < num_taps + 1; ++i) {
// Gaussian blur is a common, but maybe not the prettiest choice;
// it can feel a bit too blurry in the fine detail and too little
// long-tail. This is a simple logistic distribution, which has
// a narrower peak but longer tails.
//
// We interpret the radius as sigma, similar to Gaussian blur.
// Wikipedia says that sigma² = pi² s² / 3, which yields:
const float s = (sqrt(3.0) / M_PI) * radius;
float z = i / (2.0 * s);
weight[i] = 1.0f / (cosh(z) * cosh(z));
if (i == 0) {
sum += weight[i];
} else {
sum += 2.0f * weight[i];
}
}
for (int i = 0; i < num_taps + 1; ++i) {
weight[i] /= sum;
}
}
// Since the GPU gives us bilinear sampling for free, we can get two
// samples for the price of one (for every but the center sample,
// in which case this trick doesn't buy us anything). Simply sample
// between the two pixel centers, and we can do with fewer weights.
// (This is right even in the vertical pass where we don't actually
// sample between the pixels, because we have linear interpolation
// there too.)
//
// We pack the parameters into a float4: The relative sample coordinates
// in (x,y), and the weight in z. w is unused.
// Center sample.
uniform_samples[2 * 0 + 0] = 0.0f;
uniform_samples[2 * 0 + 1] = weight[0];
int size;
if (direction == HORIZONTAL) {
size = width;
} else if (direction == VERTICAL) {
size = height;
} else {
assert(false);
}
float num_subtexels = size / movit_texel_subpixel_precision;
float inv_num_subtexels = movit_texel_subpixel_precision / size;
// All other samples.
for (int i = 1; i < num_taps / 2 + 1; ++i) {
unsigned base_pos = i * 2 - 1;
float w1 = weight[base_pos];
float w2 = weight[base_pos + 1];
float pos1 = base_pos / (float)size;
float pos, total_weight;
combine_two_samples(w1, w2, pos1, 1.0 / (float)size, size, num_subtexels, inv_num_subtexels, &pos, &total_weight, nullptr);
uniform_samples[2 * i + 0] = pos;
uniform_samples[2 * i + 1] = total_weight;
}
delete[] weight;
}
void SingleBlurPassEffect::clear_gl_state()
{
}
} // namespace movit