-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm.c
581 lines (475 loc) · 12.7 KB
/
algorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#define _CRT_SECURE_NO_DEPRECATE
#define maxLength 75 // Arbitrary value
// m and n are hardcoded for now
#define m 3
#define n 1197
#define SIGN(a,b) ((b) > 0.0 ? fabs(a) : - fabs(a))
static double maxarg1, maxarg2;
#define FMAX(a,b) (maxarg1 = (a),maxarg2 = (b),(maxarg1) > (maxarg2) ? (maxarg1) : (maxarg2))
static int iminarg1, iminarg2;
#define IMIN(a,b) (iminarg1 = (a),iminarg2 = (b),(iminarg1 < (iminarg2) ? (iminarg1) : iminarg2))
static double sqrarg;
#define SQR(a) ((sqrarg = (a)) == 0.0 ? 0.0 : sqrarg * sqrarg)
int svdcmp(double **a, int nRows, int nCols, double *w, double **v);
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
typedef struct Point{
double x;
double y;
double z;
}Point;
typedef struct Vector{
double dx;
double dy;
double dz;
}Vector;
typedef struct Plane{
Vector u;
Vector v;
Vector normal;
Point point;
}Plane;
typedef struct newCoord{
double u;
double v;
}newCoord;
double distanceToPlane(Point point, Plane plane);
double determinant(Vector v1, Vector v2, Vector v3);
double dotProduct(Vector v1, Vector v2);
double magnitude(Vector v);
Vector getVectorFromPoints(Point p1, Point p2);
// prints an arbitrary size matrix to the standard output
void printMatrix(double **a, int rows, int cols);
void printMatrix(double **a, int rows, int cols) {
int i, j;
for (i = 0; i<rows; i++) {
for (j = 0; j<cols; j++) {
printf("%.4lf ", a[i][j]);
}
printf("\n");
}
printf("\n");
}
// prints an arbitrary size vector to the standard output
void printVector(double *v, int size);
void printVector(double *v, int size) {
int i;
for (i = 0; i<size; i++) {
printf("%.4lf ", v[i]);
}
printf("\n\n");
}
// calculates sqrt( a^2 + b^2 ) with decent precision
double pythag(double a, double b);
double pythag(double a, double b) {
double absa, absb;
absa = fabs(a);
absb = fabs(b);
if (absa > absb)
return(absa * sqrt(1.0 + SQR(absb / absa)));
else
return(absb == 0.0 ? 0.0 : absb * sqrt(1.0 + SQR(absa / absb)));
}
/*
Modified from Numerical Recipes in C
Given a matrix a[nRows][nCols], svdcmp() computes its singular value
decomposition, A = U * W * Vt. A is replaced by U when svdcmp
returns. The diagonal matrix W is output as a vector w[nCols].
V (not V transpose) is output as the matrix V[nCols][nCols].
*/
int svdcmp(double **a, int nRows, int nCols, double *w, double **v) {
int flag, i, its, j, jj, k, l, nm;
double anorm, c, f, g, h, s, scale, x, y, z, *rv1;
rv1 = malloc(sizeof(double)*nCols);
if (rv1 == NULL) {
printf("svdcmp(): Unable to allocate vector\n");
return(-1);
}
g = scale = anorm = 0.0;
for (i = 0; i<nCols; i++) {
l = i + 1;
rv1[i] = scale*g;
g = s = scale = 0.0;
if (i < nRows) {
for (k = i; k<nRows; k++) scale += fabs(a[k][i]);
if (scale) {
for (k = i; k<nRows; k++) {
a[k][i] /= scale;
s += a[k][i] * a[k][i];
}
f = a[i][i];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][i] = f - g;
for (j = l; j<nCols; j++) {
for (s = 0.0, k = i; k<nRows; k++) s += a[k][i] * a[k][j];
f = s / h;
for (k = i; k<nRows; k++) a[k][j] += f * a[k][i];
}
for (k = i; k<nRows; k++) a[k][i] *= scale;
}
}
w[i] = scale * g;
g = s = scale = 0.0;
if (i < nRows && i != nCols - 1) {
for (k = l; k<nCols; k++) scale += fabs(a[i][k]);
if (scale) {
for (k = l; k<nCols; k++) {
a[i][k] /= scale;
s += a[i][k] * a[i][k];
}
f = a[i][l];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][l] = f - g;
for (k = l; k<nCols; k++) rv1[k] = a[i][k] / h;
for (j = l; j<nRows; j++) {
for (s = 0.0, k = l; k<nCols; k++) s += a[j][k] * a[i][k];
for (k = l; k<nCols; k++) a[j][k] += s * rv1[k];
}
for (k = l; k<nCols; k++) a[i][k] *= scale;
}
}
anorm = FMAX(anorm, (fabs(w[i]) + fabs(rv1[i])));
printf(".");
fflush(stdout);
}
for (i = nCols - 1; i >= 0; i--) {
if (i < nCols - 1) {
if (g) {
for (j = l; j<nCols; j++)
v[j][i] = (a[i][j] / a[i][l]) / g;
for (j = l; j<nCols; j++) {
for (s = 0.0, k = l; k<nCols; k++) s += a[i][k] * v[k][j];
for (k = l; k<nCols; k++) v[k][j] += s * v[k][i];
}
}
for (j = l; j<nCols; j++) v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
printf(".");
fflush(stdout);
}
for (i = IMIN(nRows, nCols) - 1; i >= 0; i--) {
l = i + 1;
g = w[i];
for (j = l; j<nCols; j++) a[i][j] = 0.0;
if (g) {
g = 1.0 / g;
for (j = l; j<nCols; j++) {
for (s = 0.0, k = l; k<nRows; k++) s += a[k][i] * a[k][j];
f = (s / a[i][i]) * g;
for (k = i; k<nRows; k++) a[k][j] += f * a[k][i];
}
for (j = i; j<nRows; j++) a[j][i] *= g;
}
else
for (j = i; j<nRows; j++) a[j][i] = 0.0;
++a[i][i];
printf(".");
fflush(stdout);
}
for (k = nCols - 1; k >= 0; k--) {
for (its = 0; its<30; its++) {
flag = 1;
for (l = k; l >= 0; l--) {
nm = l - 1;
if ((fabs(rv1[l]) + anorm) == anorm) {
flag = 0;
break;
}
if ((fabs(w[nm]) + anorm) == anorm) break;
}
if (flag) {
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++) {
f = s * rv1[i];
rv1[i] = c * rv1[i];
if ((fabs(f) + anorm) == anorm) break;
g = w[i];
h = pythag(f, g);
w[i] = h;
h = 1.0 / h;
c = g * h;
s = -f * h;
for (j = 0; j<nRows; j++) {
y = a[j][nm];
z = a[j][i];
a[j][nm] = y * c + z * s;
a[j][i] = z * c - y * s;
}
}
}
z = w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j = 0; j<nCols; j++) v[j][k] = -v[j][k];
}
break;
}
if (its == 29) printf("no convergence in 30 svdcmp iterations\n");
x = w[l];
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = pythag(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
c = s = 1.0;
for (j = l; j <= nm; j++) {
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = pythag(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y *= c;
for (jj = 0; jj<nCols; jj++) {
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x * c + z * s;
v[jj][i] = z * c - x * s;
}
z = pythag(f, h);
w[j] = z;
if (z) {
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = c * g + s * y;
x = c * y - s * g;
for (jj = 0; jj < nRows; jj++) {
y = a[jj][j];
z = a[jj][i];
a[jj][j] = y * c + z * s;
a[jj][i] = z * c - y * s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
printf(".");
fflush(stdout);
}
printf("\n");
free(rv1);
return(0);
}
Point getPointOnPlane(Point point, Plane plane){
Point pointOnPlane;
double dist = distanceToPlane(point, plane);
Vector normal = plane.normal;
Vector v;
v.dx = dist*normal.dx;
v.dy = dist*normal.dy;
v.dz = dist*normal.dz;
pointOnPlane.x = point.x - v.dx;
pointOnPlane.y = point.y - v.dy;
pointOnPlane.z = point.z - v.dz;
return pointOnPlane;
}
double distanceToPlane(Point point, Plane plane){
double dist;
Vector v = getVectorFromPoints(point, plane.point);
Vector normal = plane.normal;
dist = (fabs(dotProduct(normal, v)) / magnitude(normal));
return dist;
}
Point intersectionOfThreeVectors(Vector v1, Vector v2, Vector v3){
Point intersect = { 1, 1, 1 };
// Code goes here
// Going to write my own implementation of the determinant/cross product
// Create the vectors with 0s in the corresponding columns then do Cramer's Rule
Vector case1col0 = { 0, v1.dy, v1.dz };
Vector case1col1 = { 0, v2.dy, v2.dz };
Vector case1col2 = { 0, v3.dy, v3.dz };
Vector case2col0 = { v1.dx, 0, v1.dz };
Vector case2col1 = { v2.dx, 0, v2.dz };
Vector case2col2 = { v3.dx, 0, v3.dz };
Vector case3col0 = { v1.dx, v1.dy, 0 };
Vector case3col1 = { v2.dx, v2.dy, 0 };
Vector case3col2 = { v3.dx, v3.dy, 0 };
double botDet = determinant(v1, v2, v3);
double case1Det = determinant(case1col0, case1col1, case1col2);
double case2Det = determinant(case2col0, case2col1, case2col2);
double case3Det = determinant(case3col0, case3col1, case3col2);
double xCoord = case1Det / botDet;
double yCoord = case2Det / botDet;
double zCoord = case3Det / botDet;
intersect = { xCoord, yCoord, zCoord };
return intersect;
}
double determinant(Vector v1, Vector v2, Vector v3){
double det;
double val1 = v1.dx*(v2.dy*v3.dz - v2.dz*v3.dy);
double val2 = v1.dy*(v2.dx*v3.dz - v2.dz*v3.dx);
double val3 = v1.dz*(v2.dx*v3.dy - v2.dy*v3.dx);
det = val1 - val2 + val3;
return det;
}
double dotProduct(Vector v1, Vector v2){
return v1.dx*v2.dx + v1.dy*v2.dy + v1.dz*v2.dz;
}
double magnitude(Vector v){
return sqrt(v.dx*v.dx + v.dy*v.dy + v.dz*v.dz);
}
Vector unitVector(Vector v){
Vector unitV;
double mag = magnitude(v);
unitV.dx = v.dx / mag;
unitV.dy = v.dy / mag;
unitV.dz = v.dz / mag;
return unitV;
}
Vector getVectorFromPoints(Point p1, Point p2){
Vector v;
v.dx = p2.x - p1.x;
v.dy = p2.y - p1.y;
v.dz = p2.z - p1.z;
return v;
}
newCoord rref(Point pointOnPlane, Plane plane){
newCoord uvCoord;
// Code goes here
// Create matrix
double mat[2][3];
// Initialize variables
double a11 = plane.u.dx;
double a12 = plane.v.dx;
double a13 = pointOnPlane.x;
double a21 = plane.u.dy;
double a22 = plane.v.dy;
double a23 = pointOnPlane.y;
// Fill in the matrix
mat[0][0] = a11;
mat[0][1] = a12;
mat[0][2] = a13;
mat[1][0] = a21;
mat[1][1] = a22;
mat[1][2] = a23;
// Divide to make first column
mat[0][0] = a11 / a11;
mat[0][1] = a12 / a11;
mat[0][2] = a13 / a11;
mat[1][0] = a21 / a21;
mat[1][1] = a22 / a21;
mat[1][2] = a23 / a21;
// Subtract Row1 from Row2
mat[1][0] = mat[1][0] - mat[0][0];
mat[1][1] = mat[1][1] - mat[0][1];
mat[1][2] = mat[1][2] - mat[0][2];
// Divide second row to get a22 to be 1
double temp = mat[1][1];
mat[1][1] = mat[1][1] - temp;
mat[1][2] = mat[1][2] - temp;
// Subtract Row2 from Row1
temp = mat[0][1];
mat[0][2] = mat[0][2] - temp*mat[1][2];
uvCoord.u = mat[0][2];
uvCoord.v = mat[1][2];
return uvCoord;
}
int main()
{
// Load: time, a.x, a.y, a.z from raw_data.csv
// Initialize variables
double timestamp, acceleration_x, acceleration_y, acceleration_z = 0;
int numLines = 0;
// Create file pointer
FILE *fp;
// Open stream to count lines in file
fp = fopen("raw_data.csv", "r");
int ch;
while (!feof(fp)){
ch = fgetc(fp);
if (ch == '\n'){
numLines ++;
}
}
numLines ++;
fclose(fp);
// Allocate space for array of times
// double *timeArray = malloc(sizeof(double) * numLines);
// Allocate space for array of acceleration
// double *accelerationArray = malloc(sizeof(double) * numLines * 3);
double timeArray[n];
double xyzAccelerationArray[m][n][3];
// Open stream to read the data
fp = fopen("raw_data.csv", "r");
char string[maxLength];
char* str;
int counter = 0;
int row;
int col;
while (fgets(string, maxLength, fp)) {
// Remove trailing \n
size_t ln = strlen(string) - 1;
if (string[ln] == '\n'){
string[ln] = '\0';
}
// Split the string by comma
str = _strdup(string);
char *element1 = strtok(str, ",");
char *element2 = strtok(NULL, ",");
str = _strdup(NULL);
char *element3 = strtok(str, ",");
char *element4 = strtok(NULL, ",");
// Change strings to doubles
timestamp = atof(element1);
acceleration_x = atof(element2);
acceleration_y = atof(element3);
acceleration_z = atof(element4);
// Store timestamps
timeArray[counter] = timestamp;
row = counter / n;
col = counter % n;
// Store acceleration
xyzAccelerationArray[row][col][0] = acceleration_x;
xyzAccelerationArray[row][col][1] = acceleration_y;
xyzAccelerationArray[row][col][2] = acceleration_z;
// printf("%s %s %s %s\n", element1, element2, element3, element4);
// printf("%f %f %f %f\n", timestamp, acceleration_x, acceleration_y, acceleration_z);
// printf("%s\n", string);
counter ++;
}
fclose(fp);
// End read from file
// Run Singular Variable Decomposition
double uMatrix[3][3];
double sMatrix[3][3];
svdcmp(xyzAccelerationArray, 3, numLines, uMatrix, sMatrix);
// Get U and S
Vector uVector = { uMatrix[0][0], uMatrix[0][1], uMatrix[0][2] };
Vector vVector = { uMatrix[1][0], uMatrix[1][1], uMatrix[1][2] };
Vector normalVector = { uMatrix[2][0], uMatrix[2][1], uMatrix[2][2] };
normalVector = unitVector(normalVector);
// Find intersection of vectors (0, 0, 0)
Point intersection = intersectionOfThreeVectors(uVector, vVector, normalVector);
// Create plane
Plane plane = { uVector, vVector, normalVector, intersection };
// Put points on to plane
// Find linear combination (rref)
// Return data
printf("\n");
printf("numLines: %d\n", numLines);
printf("end of file \n");
// printf("%f", timeArray[0]);
getchar();
return 0;
}