Parameter
params = {
'learning_rate': 0.003,
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'num_leaves': 10,
'min_data': 50,
'max_depth': 10
}
[LightGBM] [Info] Number of positive: 111, number of negative: 189
[LightGBM] [Info] Total Bins 111
[LightGBM] [Info] Number of data: 300, number of used features: 2
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.370000 -> initscore=-0.532217
[LightGBM] [Info] Start training from score -0.532217
Confusion Matrix:
[[68 0]
[32 0]]
Accuracy: 0.68
[LightGBM] [Warning] Starting from the 2.1.2 version, default value for the "boost_from_average" parameter in "binary" objective is true.
This may cause significantly different results comparing to the previous versions of LightGBM.
Try to set boost_from_average=false, if your old models produce bad results
Parameter
params = {
'learning_rate': 0.003,
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'num_leaves': 10,
'min_data': 50,
'max_depth': 10,
'boost_from_average': False
}
[LightGBM] [Info] Number of positive: 111, number of negative: 189
[LightGBM] [Info] Total Bins 111
[LightGBM] [Info] Number of data: 300, number of used features: 2
Confusion Matrix:
[[55 13]
[ 2 30]]
Accuracy: 0.85