-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcuraTE_live.py
359 lines (314 loc) · 15.9 KB
/
curaTE_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import subprocess
import glob
import logging
import time
import datetime
import gzip
import shutil
from Bio import SeqIO
import argparse
import pysed
LOGGER = logging.getLogger(__name__)
# Function 1: Set up input arguments
def get_args():
parser = argparse.ArgumentParser(description="Will take in a genome (genomeabbreviation.fa.gz), run RepeatModeler and, subsequently, RepeatAfterMe to generate a pre-curation directory consisting of potential curated consensus sequences as well as image files for evaluation.", formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-g', '--genomepath', type=str, help='Path to a gzippped, fasta formatted genome assembly to be queried.', required=True)
parser.add_argument('-p', '--processors', type=int, help='Number of processors to use for multi-processor enabled steps.', required = True)
parser.add_argument('-b', '--batches', type=int, help='Number of batches to run during RepeatMasker step.', required = True)
parser.add_argument('-w', '--workpath', type=str, help='Directory path where work is to be done. Must have the trailing "/".', required = True)
# parser.add_argument('-rb', '--rightbuffer', type=int, help='Right beffer size. The number of bp of flanking sequence for each hit to be extracted along with the hit. Optional, Default = 1000', default = 1000)
# parser.add_argument('-n', '--hitnumber', type=int, help='The number of hits to be exracted. Optional. Default = 50.', default = 50)
# parser.add_argument('-a', '--align', type=str, help='Align the output fasta file, y or n?. Default is y.', default = 'y')
# parser.add_argument('-t', '--trimal', type=str, help='Use trimal to remove low-aligning regions, y or n? Trimal can sometimes encounter an error that prevents it from working, this results in an empty file in downstream analyses. Default is y.', default = 'y')
# parser.add_argument('-e', '--emboss', type=str, help='Generate a trimal/emboss consensus, y or n. Optional. Default=y.', default = 'y')
# parser.add_argument('-m', '--maxiters2', type=str, help='Limit muscle iterations to 2? y or n. Optional. Default=n.', default = 'n')
parser.add_argument('-log', '--log_level', default='INFO')
# parser.add_argument('-beds', '--keep_beds', type=str, help='Keep the bed files used for extractions. y or n. Optional. Default=n.', default='n')
args = parser.parse_args()
GENOMEPATH = args.genomepath
PROCESSORS = args.processors
BATCHES = args.batches
WORKPATH = args.workpath
# RBUFFER = args.rightbuffer
# HITNUM = args.hitnumber
# ALIGN = args.align
# TRIMAL = args.trimal
# EMBOSS = args.emboss
# MAXITERS = args.maxiters2
LOG = args.log_level
# BEDS = args.keep_beds
return WORKPATH, GENOMEPATH, PROCESSORS, BATCHES, LOG
# Function 2: Directory establishment
def DIRS(DIR):
if os.path.exists(DIR):
shutil.rmtree(DIR)
os.mkdir(DIR)
# Function 3: Get genome from source to working directory
def GETGENOME(GENOMEPATH, WORKPATH):
shutil.copy2(GENOMEPATH, WORKPATH + 'assemblies_dir')
# Function 4: Run RepeatModeler on target genome and copy output to rmodeler directory
def RMODEL(GENOMEPREFIX, PROCESSORS, WORKPATH, REPEATMODELERPATH):
os.chdir(WORKPATH + 'assemblies_dir')
with gzip.open(GENOMEPREFIX + '.fa.gz', 'rb') as GENOMEIN:
with open(GENOMEPREFIX + '.fa', 'wb') as GENOMEOUT:
shutil.copyfileobj(GENOMEIN, GENOMEOUT)
os.chdir(WORKPATH + 'rmodeler_dir')
subprocess.run(REPEATMODELERPATH + 'BuildDatabase -name {} {}'.format(GENOMEPREFIX, WORKPATH + 'assemblies_dir/' + GENOMEPREFIX + '.fa'), shell=True)
subprocess.run(REPEATMODELERPATH + 'RepeatModeler -database {} -pa {} > {}.RMrun.out'.format (GENOMEPREFIX, PROCESSORS, GENOMEPREFIX), shell=True)
# Find name of RM directory with RepeatModeler run
with open(GENOMEPREFIX + '.RMrun.out') as SEARCH:
for LINE in SEARCH:
LINE = LINE.rstrip()
if 'Using output directory' in LINE:
RMOUTDIR = LINE.split()[4]
LIBRARYPATH = RMOUTDIR + '/consensi.fa.classified'
shutil.copy(LIBRARYPATH, WORKPATH + 'rmodeler_dir')
# Function 5: Reformat RepeatModeler output
def REFORMATRM(GENOMEPREFIX, WORKPATH):
os.chdir(WORKPATH + 'rmodeler_dir')
# Find name of RM directory with RepeatModeler run
with open(GENOMEPREFIX + '.RMrun.out') as SEARCH:
for LINE in SEARCH:
LINE = LINE.rstrip()
if 'Using output directory' in LINE:
RMOUTDIR = LINE.split()[4]
os.chdir(RMOUTDIR)
ORIGINAL = GENOMEPREFIX + '-families.fa'
EDITED = GENOMEPREFIX + '-families_mod.fa'
with open(ORIGINAL) as ORIGINALFILE, open(EDITED, 'w') as EDITEDFILE:
records = SeqIO.parse(ORIGINALFILE, 'fasta')
for record in records:
HEADER = record.id
NEWHEADER = HEADER.split()[0]
NEWHEADER = NEWHEADER.replace('#', '__')
NEWHEADER = NEWHEADER.replace('/', '___')
NEWHEADER = NEWHEADER.replace('rnd', GENOMEPREFIX + '-rnd')
record.id = NEWHEADER
record.description = NEWHEADER
if len(record.seq) >= 50:
SeqIO.write(record, EDITED, 'fasta')
# Function 6: Build bridge file for submitting RepeatMasker doLift script to queue
def BUILDBRIDGE(GENOMEPREFIX, WORKPATH):
os.chdir(WORKPATH + 'rmasker_dir')
print("Creating bridge.sh file...\n")
OUT = open('bridge.sh', 'w+')
OUT.write( '#!/bin/bash\n')
OUT.write( '#SBATCH --job-name=' + 'bridge_' + GENOMEPREFIX + '\n')
OUT.write( '#SBATCH --output=%x.%j.out\n')
OUT.write( '#SBATCH --error=%x.%j.err\n')
OUT.write( '#SBATCH --partition=nocona\n')
OUT.write( '#SBATCH --nodes=1\n')
OUT.write( '#SBATCH --ntasks=1\n')
OUT.write( '\n')
OUT.write( 'cd ' + WORKPATH + 'rmasker_dir\n\n')
OUT.write( '\n')
OUT.write( 'sh qsub.sh\n')
OUT.write( '\n')
OUT.write( '#Creates a list of jobIDs to keep track of the RepeatMasker batches being run.\n')
OUT.write( 'jobIDs=\"\"; for i in `squeue | grep ' + GENOMEPREFIX + ' | awk \'{print $1}\'`; do jobIDs=$jobIDs,$i; done; jobIDs=\"${jobIDs:1}\"\n')
OUT.write( '\n')
OUT.write( '#Submits the doLift script to the queue but holds it until all jobs in the jobIDs list (the RepeatMasker batches) have cleared.\n')
OUT.write( 'sbatch --dependency=afterok:$jobIDs doLift.sh\n')
OUT.write( '\n')
OUT.close()
# Function 7: Repeatmasker
def REPEATMASK(GENOMEPREFIX, BATCHES, WORKPATH, CLUSTERRUNPATH):
os.chdir(WORKPATH + 'rmodeler_dir')
with open(GENOMEPREFIX + '.RMrun.out') as SEARCH:
for LINE in SEARCH:
LINE = LINE.rstrip()
if 'Using output directory' in LINE:
RMOUTDIR = LINE.split()[4]
os.chdir(WORKPATH + 'rmasker_dir')
ASSEMBLYPATH = WORKPATH + 'assemblies_dir/' + GENOMEPREFIX + '.fa'
LIBRARYPATH = RMOUTDIR + '/consensi.fa.classified'
subprocess.run('python ' + CLUSTERRUNPATH + ' -i {} -b {} -lib {} -dir . -xsmall '.format (ASSEMBLYPATH, BATCHES, LIBRARYPATH), shell=True)
subprocess.run('sbatch bridge.sh', shell=True)
while not os.path.exists(WORKPATH + 'rmasker_dir/alldone.ok'):
time.sleep(10)
print('Waiting for dLift.sh to complete.')
if os.path.isfile(WORKPATH + 'rmasker_dir/alldone.ok'):
return
# Function 8: Generate Stockholm files
def STOCKHOLM(GENOMEPREFIX, WORKPATH, REPEATMODELERPATH):
os.chdir(WORKPATH + 'ram_dir')
ASSEMBLYPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.2bit'
ALIGNPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.fa.align.gz'
with gzip.open(ALIGNPATH, 'rb') as ALIGNIN:
with open(GENOMEPREFIX + '.fa.align', 'wb') as ALIGNOUT:
shutil.copyfileobj(ALIGNIN, ALIGNOUT)
subprocess.run(REPEATMODELERPATH + 'util/generateSeedAlignments.pl -taxon {} -assemblyFile {} {}.fa.align >generateSeeds.log'.format(GENOMEPREFIX, ASSEMBLYPATH, GENOMEPREFIX), shell=True)
# Function 9: Convert Stockholm files to fasta
def STOCK2FASTA(GENOMEPREFIX, WORKPATH, REPEATMODELERPATH):
os.chdir(WORKPATH + 'ram_dir')
for FILE in glob.glob('*.stk'):
STKNAME = os.path.basename(FILE)
TENAME = FILE.split('.')[0]
FANAME = TENAME + '.fa'
subprocess.run(REPEATMODELERPATH + 'util/Linup -i {} -fasta >{}-{}'.format(FILE, GENOMEPREFIX, FANAME), shell=True)
os.rename(STKNAME, GENOMEPREFIX + '-' + STKNAME)
# Function 10: Prepare files and file structure for running RAM
def RAMPREP(WORKPATH):
os.chdir(WORKPATH + 'ram_dir')
DIRS('extensions')
DIRS('extendlogs')
for STKFILE in glob.glob('*.stk'):
# Get file names and TE ID
TENAME = STKFILE.split('.')[0]
EXTENSIONDIR = WORKPATH + 'ram_dir/extensions/' + TENAME
DIRS(EXTENSIONDIR)
# STOCKHOLMDIR = WORKPATH + 'ram_dir/stockholm_files/'
# EDITED = TENAME + '_mod.fa'
# with open(FILE) as ORIGINALFILE, open(EDITED, 'w') as EDITEDFILE:
# records = SeqIO.parse(ORIGINALFILE, 'fasta')
# for record in records:
# HEADER = record.id
# NEWHEADER = HEADER.split('#')[0]
# record.id = NEWHEADER
# record.description = NEWHEADER
# SeqIO.write(record, EDITEDFILE, 'fasta')
shutil.move(STKFILE, EXTENSIONDIR)
# Function 11: Run RAM
def EXTEND_STK (GENOMEPREFIX, WORKPATH, RMODUTILPATH):
for FOLDER in glob.glob(WORKPATH + 'ram_dir/extensions/*'):
os.chdir(WORKPATH + 'ram_dir/extensions')
ASSEMBLYPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.2bit'
CURRENT_TE = os.path.basename(FOLDER)
print('Extending ' + CURRENT_TE)
os.chdir(CURRENT_TE)
FAMILYFILE = CURRENT_TE + '.stk'
ALIGNMENTOUT = CURRENT_TE + '-extended.out'
OUTPUTFILE = CURRENT_TE + '-extended.stk'
subprocess.run('{}extend-stk.pl -assembly {} -input {} -msaout {} -output {} -d'.format(RMODUTILPATH, ASSEMBLYPATH, FAMILYFILE, ALIGNMENTOUT, OUTPUTFILE), shell=True)
# Function 12: Generate .png files for visualizations
def PNG (GENOMEPREFIX, WORKPATH, RMODUTILPATH):
for FOLDER in glob.glob(WORKPATH + 'ram_dir/extensions/*'):
os.chdir(WORKPATH + 'ram_dir/extensions')
ASSEMBLYPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.2bit'
CURRENT_TE = os.path.basename(FOLDER)
print('Creating msa and img file: ' + CURRENT_TE)
os.chdir(CURRENT_TE)
FAMILYFILE = CURRENT_TE + '-extended.stk'
ALIGNMENTOUT = CURRENT_TE + '-extended.out'
OUTPUTFA = CURRENT_TE + '-extended.fa'
subprocess.run('{}Linup -msa -genome {} -includeFlanking 50 {} >{}'.format(RMODUTILPATH, ASSEMBLYPATH, ALIGNMENTOUT, OUTPUTFA), shell=True)
subprocess.run('{}visualizeAlignPNG.pl -genome {} -fasta {}'.format(RMODUTILPATH, ASSEMBLYPATH, FAMILYFILE), shell=True)
######Extra stuff. Ignore
# Archive original files
# Replace generic names with TE IDs in relevant files
# MSAFILEIN = 'MSA-extended_with_rmod_cons.fa'
# MSAFILEOUT = TENAME + '_MSA_extended.fa'
# INFILE = open(MSAFILEIN, 'r')
# OUTFILE = open(MSAFILEOUT, 'w')
# for LINE in INFILE:
# OUTFILE.write(LINE.replace('repam-newrep', TENAME))
# OUTFILE.write(LINE.replace('CORECONS', 'CONSENSUS-' + TENAME))
# INFILE.close()
# OUTFILE.close()
# INFILE = open(REPFILEIN, 'r')
# OUTFILE = open(REPFILEOUT, 'w')
# for LINE in INFILE:
# OUTFILE.write(LINE.replace('repam-newrep', TENAME))
# INFILE.close()
# OUTFILE.close()
# shutil.copyfileobj('img.png', TENAME + '.png')
# ENTRIES = list(SeqIO.parse('repseq.unextended', 'fasta'))
# COUNT = len(ENTRIES)
# # Sort rejects, repeats with fewer than 10 hits
# if COUNT < 10:
# shutil.copyfileobj(TENAME + '.png', WORKPATH + 'ram_dir/images_and_alignments/rejects/' + TENAME + '.png')
# shutil.copyfileobj(TENAME + '_MSA_extended.fa', WORKPATH + 'ram_dir/images_and_alignments/rejects/' + TENAME + '_MSA_extended.fa')
# if COUNT > 9:
# shutil.copyfileobj(TENAME + '_rep.fa', WORKPATH + 'ram_dir/images_and_alignments/rejects/' + TENAME + '_rep.fa')
# # Sort possible segmental duplications, >10,000 bp consensus
# if ((COUNT > 9) and (LENGTH > 13000)):
# shutil.copyfileobj(TENAME + '.png', WORKPATH + 'ram_dir/images_and_alignments/possible_SD/' + TENAME + '.png')
# shutil.copyfileobj(TENAME + '_MSA_extended.fa', WORKPATH + 'ram_dir/images_and_alignments/possible_SD/' + TENAME + '_MSA_extended.fa')
# shutil.copyfileobj(TENAME + '_rep.fa', WORKPATH + 'ram_dir/images_and_alignments/possible_SD/' + TENAME + '_rep.fa')
# if ((COUNT > 9) and (LENGTH <13000)):
# shutil.copyfileobj(TENAME + '.png', WORKPATH + 'ram_dir/images_and_alignments/likely_TEs/' + TENAME + '.png')
# shutil.copyfileobj(TENAME + '_MSA_extended.fa', WORKPATH + 'ram_dir/images_and_alignments/likely_TEs/' + TENAME + '_MSA_extended.fa')
# shutil.copyfileobj(TENAME + '_rep.fa', WORKPATH + 'ram_dir/images_and_alignments/likely_TEs/' + TENAME + '_rep.fa')
#### End of subsidiary functions
#### End ignore stuff
####MAIN function
def main():
##Get input arguments
WORKPATH, GENOMEPATH, PROCESSORS, BATCHES, LOG = get_args()
print('It is working')
# Establish paths
SOFTWARE = '/lustre/work/daray/software/'
REPEATMODELERPATH = '/lustre/work/daray/software/RepeatModeler/'
CLUSTERRUNPATH = '/home/daray/gitrepositories/bioinfo_tools/slurm_clusterrun.py'
RMODUTILPATH = '/lustre/work/daray/software/RepeatModeler/util/'
################Directories for testing only
# WORKPATH = '/lustre/scratch/daray/dVir_TEs/'
# GENOMEPATH = '/lustre/scratch/daray/dVir_TEs/testdir/dVir_160.fa.gz'
# BATCHES = 50
# PROCESSORS = 36
# Determine genome abbreviation
GENOMEPREFIX = os.path.basename(GENOMEPATH)
GENOMEPREFIX = os.path.splitext(GENOMEPREFIX)[0]
GENOMEPREFIX = os.path.splitext(GENOMEPREFIX)[0]
# Setup logging and script timing
handlers = [logging.FileHandler('curaTE.log'), logging.StreamHandler()]
logging.basicConfig(format='', handlers = handlers)
logging.getLogger().setLevel(getattr(logging, LOG.upper()))
start_time = time.time()
# Print information for user
LOGGER.info('#\n# TE_curate.py\n#')
LOGGER.info('Genome file: ' + GENOMEPATH)
LOGGER.info('Number of processors: ' + str(PROCESSORS))
LOGGER.info('Number of batches for RepeatMasker: ' + str(BATCHES))
LOGGER.info('Working directory: ' + WORKPATH)
LOGGER.info('Genome prefix to use: ' + GENOMEPREFIX)
# LOGGER.info('Number of hits evaluated: ' + str(HITNUM))
# LOGGER.info('Muscle alignment = ' + ALIGN)
# LOGGER.info('Trimal processing = ' + TRIMAL)
# LOGGER.info('Emboss consensus = ' + EMBOSS)
# LOGGER.info('Keep bed files = ' + BEDS)
LOGGER.info('Log level: ' + LOG)
# Confirm and set up directories
if not os.path.isfile(WORKPATH + 'assemblies_dir/' + GENOMEPREFIX + '.fa.gz'):
DIRS(WORKPATH + 'assemblies_dir')
GETGENOME(GENOMEPATH, WORKPATH)
CLASSIFIEDFILE = WORKPATH + 'rmodeler_dir/consensi.fa.classified'
if not os.path.isfile(CLASSIFIEDFILE):
DIRS(WORKPATH + 'rmodeler_dir')
ALIGNPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.fa.align.gz'
if not os.path.isfile(ALIGNPATH):
DIRS(WORKPATH + 'rmasker_dir')
RAMPATH = WORKPATH + 'ram_dir/extensions'
if not os.path.isdir(RAMPATH):
DIRS(WORKPATH + 'ram_dir')
# Run RepeatModeler if consensi.fa.classified does not exist
CLASSIFIEDFILE = WORKPATH + 'rmodeler_dir/consensi.fa.classified'
if not os.path.isfile(CLASSIFIEDFILE):
RMODEL(GENOMEPREFIX, PROCESSORS, WORKPATH, REPEATMODELERPATH)
# Reformat RepeatModeler output
# REFORMATRM(GENOMEPREFIX, WORKPATH)
# Run RepeatMasker using the RepeatModeler library if align.gz does not exist
ALIGNPATH = WORKPATH + 'rmasker_dir/' + GENOMEPREFIX + '.fa.align.gz'
if not os.path.isfile(ALIGNPATH):
BUILDBRIDGE(GENOMEPREFIX, WORKPATH)
REPEATMASK(GENOMEPREFIX, BATCHES, WORKPATH, CLUSTERRUNPATH)
# Get Stockholm files from RepeatMasker .align file
STOCKHOLM(GENOMEPREFIX, WORKPATH, REPEATMODELERPATH)
# Convert all stockholm files to fasta
# STOCK2FASTA(GENOMEPREFIX, WORKPATH, REPEATMODELERPATH)
# Run RAM on all fasta files
# First create the necessary directories
os.chdir(WORKPATH + 'ram_dir')
DIRS('images_and_alignments')
DIRS('possible_SD')
DIRS('likely_TEs')
DIRS('rejects')
# Now create all the files to run RAM on
RAMPREP(WORKPATH)
# Now run RAM
EXTEND_STK(GENOMEPREFIX, WORKPATH, RMODUTILPATH)
# Generate visualizations
PNG (GENOMEPREFIX, WORKPATH, RMODUTILPATH)
# Future home of AI evaluation of alignments
if __name__ =="__main__":main()