Skip to content

Latest commit

 

History

History
420 lines (314 loc) · 29.9 KB

README.md

File metadata and controls

420 lines (314 loc) · 29.9 KB

Pulsar transformations

Pulsar Transformations is a Pulsar Function that implements commonly done transformations on the data. The intent is to provide a low-code approach, so you don't need to write code, understand Pulsar Schemas, or know one of the languages supported by Pulsar Functions to transform the data flowing in your Pulsar cluster. The goal is also that the Pulsar Transformations Function is easy to use in the Pulsar cluster without having to install and operate other software. Only basic transformations are available. For more complex use cases, such as aggregation, joins and lookups, more sophisticated tools such as SQL stream processing engines shall be used.

Currently available transformations are:

  • cast: modifies the key or value schema to a target compatible schema.
  • drop-fields: drops fields from structured data.
  • merge-key-value: merges the fields of KeyValue records where both the key and value are structured data with the same schema type.
  • unwrap-key-value: if the record is a KeyValue, extract the KeyValue's key or value and make it the record value.
  • flatten: flattens structured data.
  • drop: drops a record from further processing.
  • compute: computes new properties, values or field values on the fly or replaces existing ones.

Pulsar Transformations requires Pulsar 2.11+ or Luna Streaming 2.10+ to run.

Configuration

The TransformFunction reads its configuration as JSON from the Function userConfig parameter in the format:

{
  "steps": [
    {
      "type": "drop-fields", "fields": "keyField1,keyField2", "part": "key"
    },
    {
      "type": "merge-key-value"
    },
    {
      "type": "unwrap-key-value"
    },
    {
      "type": "cast", "schema-type": "STRING"
    }
  ]
}

The transformations are done in the order in which they appear in the steps array. Each step is defined by its type and uses its own arguments. Additionally, each step can be dynamically toggled on or off by supplying a when condition that evaluates to true or false.

This example config applied on a KeyValue<AVRO, AVRO> input record with value {key={keyField1: key1, keyField2: key2, keyField3: key3}, value={valueField1: value1, valueField2: value2, valueField3: value3}} will return after each step:

{key={keyField1: key1, keyField2: key2, keyField3: key3}, value={valueField1: value1, valueField2: value2, valueField3: value3}}(KeyValue<AVRO, AVRO>)
           |
           | ”type": "drop-fields", "fields": "keyField1,keyField2”, "part": "key”
           |
{key={keyField3: key3}, value={valueField1: value1, valueField2: value2, valueField3: value3}} (KeyValue<AVRO, AVRO>)
           |
           | "type": "merge-key-value"
           |
{key={keyField3: key3}, value={keyField3: key3, valueField1: value1, valueField2: value2, valueField3: value3}} (KeyValue<AVRO, AVRO>)
           |
           | "type": "unwrap-key-value"
           |
{keyField3: key3, valueField1: value1, valueField2: value2, valueField3: value3} (AVRO)
           |
           | "type": "cast", "schema-type": "STRING"
           |
{"keyField3": "key3", "valueField1": "value1", "valueField2": "value2", "valueField3": "value3"} (STRING)

Type conversions

Some step operations like cast or compute involve conversions from a type to another. When this happens the rules are:

  • timestamp, date and time related object conversions assume UTC time zone if it is not explicit.
  • date and time related object conversions to/from STRING use the RFC3339 format.
  • timestamp related object conversions to/from LONG and DOUBLE are done using the number of milliseconds since EPOCH (1970-01-01T00:00:00Z).
  • date related object conversions to/from INTEGER, LONG, FLOAT and DOUBLE are done using the number of days since EPOCH (1970-01-01).
  • time related object conversions to/from INTEGER, LONG and DOUBLE are done using the number of milliseconds since midnight (00:00:00).

Available steps

Cast

Transforms the data to a target compatible schema. Conversion are done using the rules described in Type conversions

Step name: cast

Parameters:

Name Description
schema-type the target schema type.
part when used with KeyValue data, defines if the transformation is done on the key or on the value. If null or absent the transformation applies to both the key and the value.

Example:

UserConfig: {"steps": [{"type": "cast", "schema-type": "STRING"}]}

Input: {field1: value1, field2: value2} (AVRO)

Output: {"field1": "value1", "field2": "value2"} (STRING)

Drop fields

Drops fields of structured data (Currently only AVRO and JSON are supported).

Step name: drop-fields

Parameters:

Name Description
fields the list of fields to drop separated by commas ,
part when used with KeyValue data, defines if the transformation is done on the key or on the value. If null or absent the transformation applies to both the key and the value.

Example

UserConfig: {"steps": [{"type": "drop-fields", "fields": "password,other"}]}

Input: {name: value1, password: value2} (AVRO)

Output: {name: value1} (AVRO)

Merge KeyValue

Merges the fields of KeyValue records where both the key and value are structured types of the same schema type. (Currently only AVRO and JSON are supported).

Step name: merge-key-value

Parameters: N/A

Example

UserConfig: {"steps": [{"type": "merge-key-value"}]}

Input: {key={keyField: key}, value={valueField: value}} (KeyValue<AVRO, AVRO>)

Output: {key={keyField: key}, value={keyField: key, valueField: value}} (KeyValue<AVRO, AVRO>)

Unwrap KeyValue

If the record value is a KeyValue, extracts the KeyValue's key or value and make it the record value.

Step name: unwrap-key-value

Parameters:

Name Description
unwrapKey by default, the value is unwrapped. Set this parameter to true to unwrap the key instead.
Example

UserConfig: {"steps": [{"type": "unwrap-key-value"}]}

Input: {key={keyField: key}, value={valueField: value}} (KeyValue<AVRO, AVRO>)

Output: {valueField: value} (AVRO)

Flatten

Converts structured nested data into a new single-hierarchy-level structured data. The names of the new fields are built by concatenating the intermediate level field names.

Step name: flatten

Name Description
delimiter the delimiter to use when concatenating the field names (default: _)
part when used with KeyValue data, defines if the transformation is done on the key or on the value. If null or absent the transformation applies to both the key and the value.

Drop

Drops the record from further processing. Use in conjunction with when to selectively drop records.

Step name: drop

Parameters:

Name Description
when by default, the record is dropped. Set this parameter to selectively choose when to drop a message.

Example

UserConfig: {"steps": [{"type": "drop", "when": "value.firstName == value1"}]}

Input: {firstName: value1, lastName: value2} (AVRO)

Output: N/A. Record is dropped.

Example

UserConfig: {"steps": [{"type": "flatten"}]}

Input: {field1: {field11: value11, field12: value12}} (AVRO)

Output: {field1_field11: value11, field1_field12: value12} (AVRO)

Compute

Computes new properties, values or field values based on an expression evaluated at runtime. If the field already exists, it will be overwritten.

Step name: compute

Parameters:

Name Description
fields an array of JSON objects describing how to calculate the field values. The JSON object represents a field as described in the next table
Name (field) Description
name the name of the field to be computed. Prefix with key. or value. to compute the fields in the key or value parts of the message. In addition, you can compute values on the following message headers [destinationTopic, messageKey, properties.]. Please note that properties is a map of key/value pairs that are referenced by the dot notation, for example properties.key0
expression supports the Expression Language syntax. It is evaluated at runtime and the result of the evaluation is assigned to the field.
type the type of the computed field. This will translate to the schema type of the new field in the transformed message. The following types are currently supported [STRING, INT8, INT16, INT32, INT64, FLOAT, DOUBLE, BOOLEAN, DATE, TIME, TIMESTAMP, LOCAL_DATE_TIME, LOCAL_TIME, LOCAL_DATE, INSTANT]. For more details about each type, please check the next table. Conversions are done using the rules described in Type conversions. The type field is not required for the message headers [destinationTopic, messageKey, properties.] and STRING will be used. For the value and key, if it is not provided, then the type will be inferred from the result of the expression evaluation.
optional (default: true) if true, it marks the field as optional in the schema of the transformed message. This is useful when null is a possible value of the compute expression.
Name (field.type) Input Pulsar Schema Type AVRO Schema Type Expression Examples
STRING A unicode character sequence. STRING string "'first name'", "fn:str(value)", "fn:concat(value, '-suffix')"
INT8 An 8-bit integer. INT8 int "127", "1 + 1"
INT16 A 16-bit integer. INT16 int "32768"
INT32 A 32-bit integer. INT32 int "2147483647"
INT64 A 64-bit integer. INT64 int "9223372036854775807"
FLOAT A 32-bit floating point. FLOAT float "340282346638528859999999999999999999999.999999", "1.1 + 1.1"
DOUBLE A 64-bit floating point. DOUBLE double "1.79769313486231570e+308"
BOOLEAN true or false BOOLEAN boolean "true", "1 == 1", "value.stringField == 'matching string'"
DATE A date without a time-zone. Not supported date (logical) "'2022-10-02'", "19267" (days)
TIME A time without a time-zone. TIME time-millis (logical) "'10:15:30'", "36930000" (millis) since 00:00:00
TIMESTAMP A timestamp in UTC time-zone. TIMESTAMP timestamp-millis (logical) "'2022-10-02T01:02:03+02:00'", "1664665323000" (millis), "fn:now()"
INSTANT A timestamp in UTC time-zone. INSTANT timestamp-millis (logical) "'2022-10-02T01:02:03+02:00'", "1664665323000" (millis), "fn:now()"
LOCAL_DATE A date without a time-zone. LOCAL_DATE date (logical) "'2022-10-02'", "19267" (days)
LOCAL_TIME A time without a time-zone. LOCAL_TIME time-millis (logical) "'10:15:30'", "36930000" (millis) since 00:00:00
LOCAL_DATE_TIME A timestamp without a time-zone. LOCAL_DATE_TIME timestamp-millis (logical) "'2022-10-02T01:02:03+02:00'", "1664665323000" (millis)
BYTES A sequence of 8-bit unsigned bytes. BYTES bytes "'input'.bytes"
DECIMAL arbitrary-precision signed decimal number of the form unscaled × 10-scale Not supported decimal (logical) "fn:decimalFromUnscaled(value, 38)", where value is a byte array containing the two's-complement representation of the unscaled integer value in big-endian byte order
Example 1

UserConfig: {"steps": [{"type": "compute", "fields":[ {"name": "key.newKeyField", "expression" : "5*3", "type": "INT32"}," {"name": "value.valueField", "expression" : "fn:concat(value.valueField, '_suffix')", "type": "STRING"}]} ]}

Input: {key={keyField: key}, value={valueField: value}} (KeyValue<AVRO, AVRO>)

Output: {key={keyField: key, newKeyField: 15}, value={valueField: value_suffix}} (KeyValue<AVRO, AVRO>)

Example 2

UserConfig: {"steps": [{"type": "compute", "fields":[ {"name": "destinationTopic", "expression" : "'routed'"}, {"name": "properties.k1", "expression" : "'overwritten'"}, {"name": "properties.k2", "expression" : "'new'"}]} ]}

Input: {key={keyField: key}, value={valueField: value}} (KeyValue<AVRO, AVRO>), headers=destinationTopic: out1, propertes: {k1:v1}

Output: {key={keyField: key}, value={valueField: value}} (KeyValue<AVRO, AVRO>), headers=destinationTopic:routed, propertes: {k1:overwritten, k2:new}

Expression Language

In order to support Condition Steps and the Compute Transform, an expression language is required to evaluate the conditional step when or the compute step expression. The syntax is (EL) like that uses the dot notation to access field properties or map keys. It supports the following operators and functions:

Operators

The Expression Language supports the following operators:

  • Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
  • Logical: and, &&, or, ||, not, !
  • Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le.

Functions

Utility methods available under the fn namespace. For example, to get the current timestamp, use 'fn:now()'. The Expression Language supports the following functions:

  • toDouble(input): Converts the input value to a DOUBLE number, If the input is null, it returns null.
  • toInt(input): Converts the input value to an INTEGER number, If the input is null, it returns null.
  • uppercase(input): Returns the string input uppercased, If the input is null, it returns null.
  • lowercase(input): Returns the string input lowercased, If the input is null, it returns null.
  • contains(input, value): Returns the boolean true if value exists in input. If input or value is null, it returns false.
  • trim(input): Returns the input string with all leading and trailing spaces removed.
  • concat(input1, input2): Returns a string concatenation of input1 and input2. If either input is null, it is treated as an empty string.
  • coalesce(value, valueIfNull): Returns value if it is not null, otherwise returns valueIfNull.
  • replace(input, regex, replacement): Replaces each substring of input that matches the regex regular expression with replacement. See Java's replaceAll.
  • str(input): Converts input to a string.
  • toJson(input): Converts input to a JSON string.
  • fromJson(input): Parse input as JSON.
  • split(input, separatorExpression): Split the input to a list of strings, this is internally using the String.split() function. An empty input corresponds to an empty list. The input is convered to a String using the str() function.
  • now(): Returns the current timestamp.
  • timestampAdd(input, delta, unit): Returns a timestamp formed by adding delta in unit to the input timestamp.
    • input a timestamp to add to.
    • delta a long amount of unit to add to input. Can be a negative value to perform subtraction.
    • unit the string unit of time to add or subtract. Can be one of [years, months, days, hours, minutes, seconds, millis].
  • decimalFromUnscaled(input, scale): Converts input to a BigDecimal with the given scale.
    • input unscaled value of the BigDecimal. Can be any of STRING, INTEGER, LONG or Array of bytes containing the two's-complement representation in big-endian byte order.
    • scale the scale of the BigDecimal to create.
  • decimalFromNumber(input): Converts input to a BigDecimal.
    • input value of the BigDecimal in DOUBLE or FLOAT. If INTEGER or LONG is provided, an unscaled BigDecimal value will be returned.
  • filter(collection, expression): Returns a new collection containing only the elements of collection for which expression is true. The current element is available under the record variable. An example is fn:filter(value.queryResults, "fn:toDouble(record.similarity) >= 0.5") For all methods, if a parameter is not in the right type, a conversion will be done using the rules described in Type conversions. For instance, you can do fn:timestampAdd('2022-10-02T01:02:03Z', '42', 'hours'.bytes)
  • unpack(input, fieldsList): Returns a map containing the elements of input, for each field in the fieldList you will see an entry in the map. If the input is a string it is converted to a list using the split() function with the ',' separator

When a function returns a timestamp, its type is INSTANT.

Conditional Steps

Each step accept an optional when configuration that is evaluated at step execution time against current record (i.e. the as seen by the current step in the transformation pipeline). The when condition supports the Expression Language syntax. It provides access to the record attributes as follows:

  • key: the message key or the key portion of the record in a KeyValue schema.
  • value: the value portion of the record in a KeyValue schema, or the message payload itself.
  • topicName: the optional name of the topic which the record originated from (aka. Input Topic).
  • destinationTopic: the name of the topic on which the transformed record will be sent (aka. Output Topic).
  • eventTime: the optional timestamp attached to the record from its source. For example, the original timestamp attached to the pulsar message.
  • properties: the optional user-defined properties attached to record

You can use the . operator to access top level or nested properties on a schema-full key or value. For example, key.keyField1 or value.valueFiled1.nestedValueField. You can also use to access different keys of the user defined properties. For example, properties.prop1.

Example 1: KeyValue (KeyValue<AVRO, AVRO>)

{
  "key": {
    "compound": {
      "uuid": "uuidValue",
      "timestamp": 1663616014
    },
    "value" : {
      "first" : "f1",
      "last" : "l1",
      "rank" : 1,
      "address" : {
        "zipcode" : "abc-def"
      }
    }
  }}
when Evaluates to
"key.compound.uuid == 'uudValue'" True
"key.compound.timestamp <= 10" False
"value.first == 'f1' && value.last.toUpperCase() == 'L1' True
"value.rank <= 1 && value.address.substring(0, 3) == 'abc' True

Example 2: (Primitive string schema with metadata)

  • Partition Key: key1
  • Source topic: topic1
  • User defined k/v: {"prop1": "p1", "prop2": "p2"}
  • Payload (String): Hello world!
when Evaluates to
"key == 'key1' or topicName == 'topic1' " True
"value == 'Hello world!'" True
"properties.prop1 == 'p2'" False

Deployment

See the Pulsar docs for more details on how to deploy a Function.

Deploy as a non built-in Function

  • Create a Transformation Function providing the path to the Pulsar Transformations NAR.
pulsar-admin functions create \
--jar pulsar-transformations-2.0.0.nar \
--name my-function \
--inputs my-input-topic \
--output my-output-topic \
--user-config '{"steps": [{"type": "drop-fields", "fields": "password"}, {"type": "merge-key-value"}, {"type": "unwrap-key-value"}, {"type": "cast", "schema-type": "STRING"}]}'

Deploy as a built-in Function

  • Put the Pulsar Transformations NAR in the functions directory of the Pulsar Function worker (or broker).
cp pulsar-transformations-2.0.0.nar $PULSAR_HOME/functions/pulsar-transformations-2.0.0.nar
  • Restart the function worker (or broker) instance or reload all the built-in functions:
pulsar-admin functions reload
  • Create a Transformation Function with the admin CLI. The built-in function type is transforms.
pulsar-admin functions create \
--function-type transforms \
--name my-function \
--inputs my-input-topic \
--output my-output-topic \
--user-config '{"steps": [{"type": "drop-fields", "fields": "password"}, {"type": "merge-key-value"}, {"type": "unwrap-key-value"}, {"type": "cast", "schema-type": "STRING"}]}'

Deploy the Transformation Function coupled with a Pulsar Sink

This requires Datastax Luna Streaming 2.10.1.6+.

Thanks to PIP-193 it's possible to execute a function inside a sink process, removing the need of temporary topics.

  • Create a Pulsar Sink instance with transform-function Transformation Function with the admin CLI.
pulsar-admin sinks create \
--sink-type <sink_type> \
--inputs my-input-topic \
--tenant public \
--namespace default \
--name my-sink \
--transform-function "builtin://transforms" \
--transform-function-config '{"steps": [{"type": "drop-fields", "fields": "password"}, {"type": "merge-key-value"}, {"type": "unwrap-key-value"}, {"type": "cast", "schema-type": "STRING"}]}'