We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[rank5]: Traceback (most recent call last): [rank5]: File "/root/Stanford-Megatron-LM/pretrain_gpt.py", line 154, in <module> [rank5]: pretrain(train_valid_test_datasets_provider, model_provider, [rank5]: File "/root/Stanford-Megatron-LM/megatron/training.py", line 147, in pretrain [rank5]: iteration = train(forward_step_func, [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/training.py", line 712, in train [rank5]: train_step(forward_step_func, [rank5]: File "/root/Stanford-Megatron-LM/megatron/training.py", line 421, in train_step [rank5]: losses_reduced = forward_backward_func( [rank5]: ^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/schedules.py", line 263, in forward_backward_no_pipelining [rank5]: output_tensor = forward_step(forward_step_func, data_iterator, [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/schedules.py", line 133, in forward_step [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/pretrain_gpt.py", line 124, in forward_step [rank5]: output_tensor = model(tokens, position_ids, attention_mask, [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/distributed.py", line 59, in forward [rank5]: return self.module(*inputs, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/module.py", line 184, in forward [rank5]: outputs = self.module(*inputs, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/gpt_model.py", line 80, in forward [rank5]: lm_output = self.language_model( [rank5]: ^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/language_model.py", line 432, in forward [rank5]: encoder_output = self.encoder( [rank5]: ^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 1227, in forward [rank5]: hidden_states = layer( [rank5]: ^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 800, in forward [rank5]: mlp_output, mlp_bias = self.mlp(layernorm_output) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 202, in forward [rank5]: return self.moe.forward(x) [rank5]: ^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 468, in forward [rank5]: out = self.experts(x, scores, expert_weights, top_experts) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl [rank5]: return self._call_impl(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl [rank5]: return forward_call(*args, **kwargs) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 429, in forward [rank5]: x, tokens_per_expert = self.forward_fn(x, expert_weights, top_experts) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 262, in parallel_forward_once [rank5]: indices, bin_ids, bins, tokens_per_expert = (self.indices_and_bins(top_experts)) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 161, in indices_and_bins [rank5]: output = ops.sort(top_expert, self.sort_end_bit) [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 574, in apply [rank5]: return super().apply(*args, **kwargs) # type: ignore[misc] [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/ops/sort.py", line 34, in forward [rank5]: ops.sort(x, end_bit, x_out, iota_out) [rank5]: File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 574, in apply [rank5]: return super().apply(*args, **kwargs) # type: ignore[misc] [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [rank5]: TypeError: SortOp.forward() takes from 2 to 3 positional arguments but 5 were given
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The text was updated successfully, but these errors were encountered: