-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathridge.c
executable file
·382 lines (297 loc) · 8.73 KB
/
ridge.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#include <math.h>
#include <assert.h>
#include <stdlib.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_cdf.h>
#include "ridge.h"
#include "util.h"
#define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b))
#define EPS 1e-12
void shuffle(size_t array[], const size_t n)
{
size_t i, j;
double t;
// n should be much smaller than RAND_MAX
assert(n < RAND_MAX/2);
for (i = 0; i < n-1; i++)
{
j = i + rand() / (RAND_MAX / (n - i) + 1);
t = array[j];
array[j] = array[i];
array[i] = t;
}
}
int permutation_test(
ridge_workspace *workspace,
const gsl_matrix *X,
const gsl_matrix *Y,
const double lambda,
const size_t nrand,
const int mode,
const int verbose)
{
size_t n = X->size1, p = X->size2, m = Y->size2, *array_index, i, j, step;
gsl_matrix *I, *T, *Y_rand, *beta_rand, *aver, *aver_sq, *beta, *zscore, *pvalue;
if(n != Y->size1) return ERROR_DIMENSION;
// connect to the workspace
assert(workspace != NULL);
I = workspace->I;
T = workspace->T;
Y_rand = workspace->Y_rand;
beta_rand = workspace->beta_rand;
aver = workspace->aver;
aver_sq = workspace->aver_sq;
array_index = workspace->array_index;
beta = workspace->beta;
zscore = workspace->zscore;
pvalue = workspace->pvalue;
// we assume the programmer should make these fields correct
assert(I->size1 == p && I->size2 == p);
assert(T->size1 == p && T->size2 == n);
assert(Y_rand->size1 == n && Y_rand->size2 == m);
assert(beta_rand->size1 == p && beta_rand->size2 == m);
assert(aver->size1 == p && aver->size2 == m);
assert(aver_sq->size1 == p && aver_sq->size2 == m);
assert(beta->size1 == p && beta->size2 == m);
assert(zscore->size1 == p && zscore->size2 == m);
assert(pvalue->size1 == p && pvalue->size2 == m);
////////////////////////////////////////////////
// start computation
// compute (X'X + lambda*I)^-1
gsl_matrix_set_identity(I);
gsl_blas_dsyrk(CblasLower, CblasTrans, 1, X, lambda, I);
if(gsl_linalg_cholesky_decomp(I) == GSL_EDOM) return ERROR_DECOMPOSITION;
gsl_linalg_cholesky_invert(I);
// T = (X'X + lambda)^-1 * X'
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1, I, X, 0, T);
// beta = (X'X)^-1 X'Y
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1, T, Y, 0, beta);
// no randomization request
if(nrand == 0) return SUCCESS;
////////////////////////////////////////////////
// start randomization
// all random sequences are the same
srand(0);
for(i=0;i<n;i++) array_index[i] = i;
gsl_matrix_set_zero(aver);
gsl_matrix_set_zero(aver_sq);
gsl_matrix_set_zero(pvalue);
step = MAX(1, nrand/10);
for(i=0;i<nrand;i++)
{
if(verbose && i%step == 0) fprintf(stdout, "%lu%%\n", 100*i/nrand);
shuffle(array_index, n);
// create a randomized Y
for(j=0;j<n;j++){
gsl_vector_const_view t = gsl_matrix_const_row(Y, array_index[j]);
gsl_matrix_set_row(Y_rand, j, &t.vector);
}
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1, T, Y_rand, 0, beta_rand);
// p-value comparison
for(j=0; j< p * m; j++)
{
switch (mode) {
case TWOSIDED:
if(fabs(beta_rand->data[j]) >= fabs(beta->data[j])) pvalue->data[j]++;
break;
case GREATER:
if(beta_rand->data[j] >= beta->data[j]) pvalue->data[j]++;
break;
case LESS:
if(beta_rand->data[j] <= beta->data[j]) pvalue->data[j]++;
break;
default:
return ERROR_UNRECOGNIZED_MODE;
break;
}
}
// variation
gsl_matrix_add(aver, beta_rand);
gsl_matrix_mul_elements(beta_rand, beta_rand);
gsl_matrix_add(aver_sq, beta_rand);
}
gsl_matrix_scale(aver, 1.0/nrand);
gsl_matrix_scale(aver_sq, 1.0/nrand);
gsl_matrix_scale(pvalue, 1.0/nrand);
// compute z-score
gsl_matrix_memcpy(zscore, beta);
gsl_matrix_sub(zscore, aver);
gsl_matrix_mul_elements(aver, aver);
gsl_matrix_sub(aver_sq, aver);
for(i=0;i< aver_sq->size1 * aver_sq->size2; i++)
{
// first of all, confirm the computational procedure is right
if(aver_sq->data[i] < 0) assert(aver_sq->data[i] > -EPS);
if(aver_sq->data[i] < EPS) return ERROR_VARIANCE;
aver_sq->data[i] = sqrt(aver_sq->data[i]);
}
gsl_matrix_div_elements(zscore, aver_sq);
return SUCCESS;
}
int t_test(
ridge_workspace *workspace,
const gsl_matrix *X,
const gsl_matrix *Y,
const double lambda,
const int mode,
const int verbose)
{
size_t n = X->size1, p = X->size2, m = Y->size2, i, j;
gsl_matrix *I, *T, *Y_rand, *aver_sq, *beta, *zscore, *pvalue;
double *sigma2, df, t, se;
if(n != Y->size1) return ERROR_DIMENSION;
// connect to the workspace
assert(workspace != NULL);
sigma2 = workspace->sigma2;
I = workspace->I;
T = workspace->T;
Y_rand = workspace->Y_rand;
aver_sq = workspace->aver_sq;
beta = workspace->beta;
zscore = workspace->zscore;
pvalue = workspace->pvalue;
// we assume the programmer should make these fields correct
assert(I->size1 == p && I->size2 == p);
assert(T->size1 == p && T->size2 == n);
assert(Y_rand->size1 == n && Y_rand->size2 == m);
assert(aver_sq->size1 == p && aver_sq->size2 == m);
assert(beta->size1 == p && beta->size2 == m);
assert(zscore->size1 == p && zscore->size2 == m);
assert(pvalue->size1 == p && pvalue->size2 == m);
////////////////////////////////////////////////
// start computation
// compute (X'X + lambda*I)^-1
gsl_matrix_set_identity(I);
gsl_blas_dsyrk(CblasLower, CblasTrans, 1, X, lambda, I);
if(gsl_linalg_cholesky_decomp(I) == GSL_EDOM) return ERROR_DECOMPOSITION;
gsl_linalg_cholesky_invert(I);
// T = (X'X + lambda)^-1 * X'
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1, I, X, 0, T);
if(lambda == 0)
{
if(verbose) fprintf(stdout, "Use regular OLS since lambda = 0\n");
df = n - p;
}else{
// degree of freedom as n - trace(H) (H = X*T)
for(df=n, i=0; i<n; i++)
{
gsl_vector_const_view X_i = gsl_matrix_const_row(X, i);
gsl_vector_const_view T_i = gsl_matrix_const_column(T, i);
gsl_blas_ddot(&X_i.vector, &T_i.vector, &t);
df -= t;
}
}
if(verbose) fprintf(stdout, "degree of freedom = %f and n=%lu\n", df, n);
if(df <= 0) return ERROR_DEGREE_FREEDOM;
// beta = (X'X)^-1 X'Y
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1, T, Y, 0, beta);
// Y_est = X*beta
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1, X, beta, 0, Y_rand);
// Y_est - Y
gsl_matrix_sub(Y_rand, Y);
// compute sigma vector
for(i=0; i<m; i++)
{
gsl_vector_const_view c = gsl_matrix_const_column(Y_rand, i);
gsl_blas_ddot(&c.vector, &c.vector, sigma2 + i);
sigma2[i] /= df;
}
for(i=0; i<p; i++)
{
if(lambda==0){
// use simplified approach
t = gsl_matrix_get(I, i, i);
}else{
gsl_vector_const_view c = gsl_matrix_const_row(T, i);
gsl_blas_ddot(&c.vector, &c.vector, &t);
}
for(j=0;j<m;j++)
{
se = sigma2[j] * t;
if(se < EPS){
if(verbose) fprintf(stderr, "Error: standard error %e smaller than %e on %lu, %lu\n", se, EPS, i, j);
//return ERROR_VARIANCE;
se = NAN;
}else{
se = sqrt(se);
}
gsl_matrix_set(aver_sq, i, j, se);
}
}
// compute t-value
gsl_matrix_memcpy(zscore, beta);
gsl_matrix_div_elements(zscore, aver_sq);
// compute t-test p-value
for(i=0;i<p;i++)
{
for(j=0;j<m;j++)
{
t = gsl_matrix_get(zscore, i, j);
if(!isnan(t))
{
switch (mode) {
case TWOSIDED:
t = 2*gsl_cdf_tdist_Q(fabs(t), df);
break;
case GREATER:
t = gsl_cdf_tdist_Q(t, df);
break;
case LESS:
t = gsl_cdf_tdist_P(t, df);
break;
default:
return ERROR_UNRECOGNIZED_MODE;
break;
}
}
gsl_matrix_set(pvalue, i, j, t);
}
}
return SUCCESS;
}
// allocate the internal variable space
ridge_workspace * ridge_workspace_alloc(const size_t n, const size_t p, const size_t m)
{
ridge_workspace *r = (ridge_workspace*)malloc(sizeof(ridge_workspace));
// intermediate space
r->array_index = (size_t*)malloc(n*sizeof(size_t));
r->sigma2 = (double*)malloc(m*sizeof(double));
r->I = gsl_matrix_alloc(p, p);
r->T = gsl_matrix_alloc(p, n);
r->Y_rand = gsl_matrix_alloc(n, m);
r->beta_rand = gsl_matrix_alloc(p, m);
r->aver = gsl_matrix_calloc(p, m);
r->aver_sq = gsl_matrix_calloc(p, m);
// result section
r->beta = gsl_matrix_calloc(p, m);
r->zscore = gsl_matrix_calloc(p, m);
r->pvalue = gsl_matrix_calloc(p, m);
// handle errors by non-exit procedure
gsl_set_error_handler_off();
return r;
}
void ridge_workspace_free(ridge_workspace *r, const int delete_result)
{
gsl_matrix_free(r->I);
gsl_matrix_free(r->T);
gsl_matrix_free(r->Y_rand);
gsl_matrix_free(r->beta_rand);
gsl_matrix_free(r->aver);
free(r->array_index);
free(r->sigma2);
if(delete_result){
gsl_matrix_free(r->beta);
gsl_matrix_free(r->aver_sq);
gsl_matrix_free(r->zscore);
gsl_matrix_free(r->pvalue);
}else{
// still keep the data block
gsl_matrix_partial_free(r->beta);
gsl_matrix_partial_free(r->aver_sq);
gsl_matrix_partial_free(r->zscore);
gsl_matrix_partial_free(r->pvalue);
}
free(r);
}