|
1 | 1 | __all__ = ["DataFrame"]
|
2 | 2 |
|
| 3 | +from typing import Sequence, TYPE_CHECKING |
| 4 | + |
| 5 | +if TYPE_CHECKING: |
| 6 | + from .column_object import Column |
| 7 | + |
3 | 8 |
|
4 | 9 | class DataFrame:
|
5 |
| - pass |
| 10 | + |
| 11 | + def get_column_by_name(self, name: str, /) -> Column: |
| 12 | + """ |
| 13 | + Select a column by name. |
| 14 | +
|
| 15 | + Parameters |
| 16 | + ---------- |
| 17 | + name : str |
| 18 | +
|
| 19 | + Returns |
| 20 | + ------- |
| 21 | + Column |
| 22 | +
|
| 23 | + Raises |
| 24 | + ------ |
| 25 | + KeyError |
| 26 | + If the key is not present. |
| 27 | + """ |
| 28 | + ... |
| 29 | + |
| 30 | + def get_columns_by_name(self, names: Sequence[str], /) -> "DataFrame": |
| 31 | + """ |
| 32 | + Select multiple columns by name. |
| 33 | +
|
| 34 | + Parameters |
| 35 | + ---------- |
| 36 | + names : Sequence[str] |
| 37 | +
|
| 38 | + Returns |
| 39 | + ------- |
| 40 | + DataFrame |
| 41 | +
|
| 42 | + Raises |
| 43 | + ------ |
| 44 | + KeyError |
| 45 | + If the any requested key is not present. |
| 46 | + """ |
| 47 | + ... |
| 48 | + |
| 49 | + def get_rows(self, indices: Sequence[int]) -> "DataFrame": |
| 50 | + """ |
| 51 | + Select a subset of rows, similar to `ndarray.take`. |
| 52 | +
|
| 53 | + Parameters |
| 54 | + ---------- |
| 55 | + indices : Sequence[int] |
| 56 | + Positions of rows to select. |
| 57 | +
|
| 58 | + Returns |
| 59 | + ------- |
| 60 | + DataFrame |
| 61 | +
|
| 62 | + Notes |
| 63 | + ----- |
| 64 | + Some discussion participants prefer a stricter type Column[int] for |
| 65 | + indices in order to make it easier to implement in a performant manner |
| 66 | + on GPUs. |
| 67 | + """ |
| 68 | + ... |
| 69 | + |
| 70 | + def slice_rows( |
| 71 | + self, start: int | None, stop: int | None, step: int | None |
| 72 | + ) -> "DataFrame": |
| 73 | + """ |
| 74 | + Select a subset of rows corresponding to a slice. |
| 75 | +
|
| 76 | + Parameters |
| 77 | + ---------- |
| 78 | + start : int or None |
| 79 | + stop : int or None |
| 80 | + step : int or None |
| 81 | +
|
| 82 | + Returns |
| 83 | + ------- |
| 84 | + DataFrame |
| 85 | + """ |
| 86 | + ... |
| 87 | + |
| 88 | + def get_rows_by_mask(self, mask: Column[bool]) -> "DataFrame": |
| 89 | + """ |
| 90 | + Select a subset of rows corresponding to a mask. |
| 91 | +
|
| 92 | + Parameters |
| 93 | + ---------- |
| 94 | + mask : Column[bool] |
| 95 | +
|
| 96 | + Returns |
| 97 | + ------- |
| 98 | + DataFrame |
| 99 | +
|
| 100 | + Notes |
| 101 | + ----- |
| 102 | + Some participants preferred a weaker type Arraylike[bool] for mask, |
| 103 | + where 'Arraylike' denotes an object adhering to the Array API standard. |
| 104 | + """ |
| 105 | + ... |
| 106 | + |
| 107 | + def insert(self, loc: int, label: str, value: Column) -> "DataFrame": |
| 108 | + """ |
| 109 | + Insert column into DataFrame at specified location. |
| 110 | +
|
| 111 | + Parameters |
| 112 | + ---------- |
| 113 | + loc : int |
| 114 | + Insertion index. Must verify 0 <= loc <= len(columns). |
| 115 | + label : str |
| 116 | + Label of the inserted column. |
| 117 | + value : Column |
| 118 | + """ |
| 119 | + ... |
| 120 | + |
| 121 | + def drop_column(self, label: str) -> "DataFrame": |
| 122 | + """ |
| 123 | + Drop the specified column. |
| 124 | +
|
| 125 | + Parameters |
| 126 | + ---------- |
| 127 | + label : str |
| 128 | +
|
| 129 | + Returns |
| 130 | + ------- |
| 131 | + DataFrame |
| 132 | +
|
| 133 | + Raises |
| 134 | + ------ |
| 135 | + KeyError |
| 136 | + If the label is not present. |
| 137 | + """ |
| 138 | + ... |
| 139 | + |
| 140 | + def set_column(self, label: str, value: Column) -> "DataFrame": |
| 141 | + """ |
| 142 | + Add or replace a column. |
| 143 | +
|
| 144 | + Parameters |
| 145 | + ---------- |
| 146 | + label : str |
| 147 | + value : Column |
| 148 | +
|
| 149 | + Returns |
| 150 | + ------- |
| 151 | + DataFrame |
| 152 | + """ |
| 153 | + ... |
| 154 | + |
| 155 | + def __eq__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 156 | + """ |
| 157 | + Parameters |
| 158 | + ---------- |
| 159 | + other : DataFrame or Scalar |
| 160 | + If DataFrame, must have same length and matching columns. |
| 161 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 162 | + for the operation by the underling dtypes. |
| 163 | +
|
| 164 | + Returns |
| 165 | + ------- |
| 166 | + DataFrame |
| 167 | + """ |
| 168 | + ... |
| 169 | + |
| 170 | + def __ne__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 171 | + """ |
| 172 | + Parameters |
| 173 | + ---------- |
| 174 | + other : DataFrame or Scalar |
| 175 | + If DataFrame, must have same length and matching columns. |
| 176 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 177 | + for the operation by the underling dtypes. |
| 178 | +
|
| 179 | + Returns |
| 180 | + ------- |
| 181 | + DataFrame |
| 182 | + """ |
| 183 | + ... |
| 184 | + |
| 185 | + def __ge__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 186 | + """ |
| 187 | + Parameters |
| 188 | + ---------- |
| 189 | + other : DataFrame or Scalar |
| 190 | + If DataFrame, must have same length and matching columns. |
| 191 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 192 | + for the operation by the underling dtypes. |
| 193 | +
|
| 194 | + Returns |
| 195 | + ------- |
| 196 | + DataFrame |
| 197 | + """ |
| 198 | + ... |
| 199 | + |
| 200 | + def __gt__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 201 | + """ |
| 202 | + Parameters |
| 203 | + ---------- |
| 204 | + other : DataFrame or Scalar |
| 205 | + If DataFrame, must have same length and matching columns. |
| 206 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 207 | + for the operation by the underling dtypes. |
| 208 | +
|
| 209 | + Returns |
| 210 | + ------- |
| 211 | + DataFrame |
| 212 | + """ |
| 213 | + ... |
| 214 | + |
| 215 | + def __le__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 216 | + """ |
| 217 | + Parameters |
| 218 | + ---------- |
| 219 | + other : DataFrame or Scalar |
| 220 | + If DataFrame, must have same length and matching columns. |
| 221 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 222 | + for the operation by the underling dtypes. |
| 223 | +
|
| 224 | + Returns |
| 225 | + ------- |
| 226 | + DataFrame |
| 227 | + """ |
| 228 | + ... |
| 229 | + |
| 230 | + def __lt__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 231 | + """ |
| 232 | + Parameters |
| 233 | + ---------- |
| 234 | + other : DataFrame or Scalar |
| 235 | + If DataFrame, must have same length and matching columns. |
| 236 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 237 | + for the operation by the underling dtypes. |
| 238 | +
|
| 239 | + Returns |
| 240 | + ------- |
| 241 | + DataFrame |
| 242 | + """ |
| 243 | + ... |
| 244 | + |
| 245 | + def __add__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 246 | + """ |
| 247 | + Parameters |
| 248 | + ---------- |
| 249 | + other : DataFrame or Scalar |
| 250 | + If DataFrame, must have same length and matching columns. |
| 251 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 252 | + for the operation by the underling dtypes. |
| 253 | +
|
| 254 | + Returns |
| 255 | + ------- |
| 256 | + DataFrame |
| 257 | + """ |
| 258 | + ... |
| 259 | + |
| 260 | + def __sub__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 261 | + """ |
| 262 | + Parameters |
| 263 | + ---------- |
| 264 | + other : DataFrame or Scalar |
| 265 | + If DataFrame, must have same length and matching columns. |
| 266 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 267 | + for the operation by the underling dtypes. |
| 268 | +
|
| 269 | + Returns |
| 270 | + ------- |
| 271 | + DataFrame |
| 272 | + """ |
| 273 | + ... |
| 274 | + |
| 275 | + def __mul__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 276 | + """ |
| 277 | + Parameters |
| 278 | + ---------- |
| 279 | + other : DataFrame or Scalar |
| 280 | + If DataFrame, must have same length and matching columns. |
| 281 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 282 | + for the operation by the underling dtypes. |
| 283 | +
|
| 284 | + Returns |
| 285 | + ------- |
| 286 | + DataFrame |
| 287 | + """ |
| 288 | + ... |
| 289 | + |
| 290 | + def __truediv__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 291 | + """ |
| 292 | + Parameters |
| 293 | + ---------- |
| 294 | + other : DataFrame or Scalar |
| 295 | + If DataFrame, must have same length and matching columns. |
| 296 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 297 | + for the operation by the underling dtypes. |
| 298 | +
|
| 299 | + Returns |
| 300 | + ------- |
| 301 | + DataFrame |
| 302 | + """ |
| 303 | + ... |
| 304 | + |
| 305 | + def __floordiv__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 306 | + """ |
| 307 | + Parameters |
| 308 | + ---------- |
| 309 | + other : DataFrame or Scalar |
| 310 | + If DataFrame, must have same length and matching columns. |
| 311 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 312 | + for the operation by the underling dtypes. |
| 313 | +
|
| 314 | + Returns |
| 315 | + ------- |
| 316 | + DataFrame |
| 317 | + """ |
| 318 | + ... |
| 319 | + |
| 320 | + def __pow__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 321 | + """ |
| 322 | + Parameters |
| 323 | + ---------- |
| 324 | + other : DataFrame or Scalar |
| 325 | + If DataFrame, must have same length and matching columns. |
| 326 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 327 | + for the operation by the underling dtypes. |
| 328 | +
|
| 329 | + Returns |
| 330 | + ------- |
| 331 | + DataFrame |
| 332 | + """ |
| 333 | + ... |
| 334 | + |
| 335 | + def __mod__(self, other: DataFrame | "Scalar") -> "DataFrame": |
| 336 | + """ |
| 337 | + Parameters |
| 338 | + ---------- |
| 339 | + other : DataFrame or Scalar |
| 340 | + If DataFrame, must have same length and matching columns. |
| 341 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 342 | + for the operation by the underling dtypes. |
| 343 | +
|
| 344 | + Returns |
| 345 | + ------- |
| 346 | + DataFrame |
| 347 | + """ |
| 348 | + ... |
| 349 | + |
| 350 | + def __divmod__(self, other: DataFrame | "Scalar") -> tuple["DataFrame", "DataFrame"]: |
| 351 | + """ |
| 352 | + Parameters |
| 353 | + ---------- |
| 354 | + other : DataFrame or Scalar |
| 355 | + If DataFrame, must have same length and matching columns. |
| 356 | + "Scalar" here is defined implicitly by what scalar types are allowed |
| 357 | + for the operation by the underling dtypes. |
| 358 | +
|
| 359 | + Returns |
| 360 | + ------- |
| 361 | + DataFrame |
| 362 | + DataFrame |
| 363 | + """ |
| 364 | + ... |
0 commit comments